Skip to main content
Log in

Metal ion-doped CdTe-based quantum dots: preparation, characterization and photocatalytic application

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Composite systems of metal-doped CdTe quantum dots (QDs) were synthesized by a simple and fast hydrothermal method. The synthesized nanoparticles of CdTe QDs and three metal ions (Ag, Au and Cu) as dopants were studied using TEM, XRD, EDAX, FTIR and PL. The photocatalytic activity of synthesized QD-based photocatalysts was investigated by removing tetracycline from an aqueous solution under ultraviolet-C light radiation. The incorporation of metals to QDs increases the intensity of photoluminescence (PL) and also causes red shifts in the fluorescence spectrum, resulting in improved photocatalytic properties. The presence of metals with high electron density in their capacitance layer increases the energy of HOMO toward the LOMO, which, in addition to decrease in the band gap, increases the probability of electron excitation of HOMO–LOMO. As a result, the light absorption properties increase and the emission peak shifts toward the longer wavelengths. Results showed that the removal of TC by QD-based photocatalysts followed the pseudo-first-order kinetic model. Finally, it can be concluded that metal-doped CdTe-based QDs photocatalysts can perform well in water remediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Balci Leinen M, Dede D, Khan MU, Çağlayan M, Koçak Y, Demir HV, Ozensoy E (2018) CdTe quantum dot-functionalized P25 titania composite with enhanced photocatalytic NO2 storage selectivity under UV and Vis irradiation. ACS Appl Mater Interf 11:865–879. https://doi.org/10.1021/acsami.8b18036

    Article  CAS  Google Scholar 

  • Brown KA, Dayal S, Ai X, Rumbles G, King PW (2010) Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J Am Chem Soc 132:9672–9680. https://doi.org/10.1021/ja101031r

  • Cai A, Wang Q, Chang Y, Wang X (2017) Graphitic carbon nitride decorated with S, N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis. J Alloys Compd 692:183–189. https://doi.org/10.1016/j.jallcom.2016.09.030

  • Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138. https://doi.org/10.1021/ac0258251

  • Chen Q, Wu S, Xin Y (2016) Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. Chem Eng J 302:377–387. https://doi.org/10.1016/j.cej.2016.05.076

  • Chen F, Yang Q, Yao F, Wang S, Sun J, An H, Yi K, Wang Y, Zhou Y, Wang L (2017) Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions. J Catal 352:160–170. https://doi.org/10.1016/j.jcat.2017.04.032

  • Fernández-Argüelles MT, Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (II) in aqueous solutions by luminescent measurements. Anal Chim Acta 549:20–25. https://doi.org/10.1016/j.aca.2005.06.013

  • Fernando KS, Sahu S, Liu, Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun YP (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interf 7:8363–8376. https://doi.org/10.1021/acsami.5b00448

  • Gimbert-Suriñach C, Albero J, Stoll T, Fortage Jrm, Collomb MN, Deronzier A, Palomares E, Llobet A (2014) Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. J Am Chem Soc 136:7655–7661. https://doi.org/10.1021/ja501489h

  • Gong Y, Wu Y, Xu Y, Li L, Li C, Liu X, Niu L (2018) All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic waste water. Chem Eng J 350:257–267. https://doi.org/10.1016/j.cej.2018.05.186

  • Gu C, Karthikeyan K (2005) Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ Sci Technol 39:9166–9173. https://doi.org/10.1021/es051109f

  • Han K, Wang M, Zhang S, Wu S, Yang Y, Sun L (2015) Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chem Commun 51:7008–7011. https://doi.org/10.1039/C5CC00536A

  • Hanifehpour Y, Hamnabard N, Khomami B, Joo SW, Bong-Ki MI, Jung JH (2016) A novel visible-light Nd-doped CdTe photocatalyst for degradation of Reactive Red 43: synthesis, characterization, and photocatalytic properties. J Rare Earths 34:45–54. https://doi.org/10.1016/S1002-0721(14)60576-7

    Article  CAS  Google Scholar 

  • Ji Y, Ferronato C, Salvador A, Yang X, Chovelon JM (2014) Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Sci Total Environ 472:800–808. https://doi.org/10.1016/j.scitotenv.2013.11.008

  • Jiang J, Tsao S, O’sullivan T, Zhang W, Lim H, Sills T, Mi K, Razeghi M, Brown G, Tidrow M (2004) High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition. Appl Phys Lett 84:2166–2168. https://doi.org/10.1063/1.2188056

  • Jurado A, Vàzquez-Suñé E, Carrera J, de Alda ML, Pujades E, Barceló D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440:82–94. https://doi.org/10.1016/j.scitotenv.2012.08.029

  • Kim J, Kim HT, Park C (2011) Synthesis and characterization of cadmium telluride nanocrystals for using hybrid solar cell. Paper presented at: 16th international conference on Optical MEMS and nanophotonics (IEEE). https://doi.org/10.1109/OMEMS.2011.6031101

  • Kondratenko T, Ovchinnikov O, Grevtseva I, Smirnov M, Erina O, Khokhlov V, Darinsky B, Tatianina E (2020) Thioglycolic Acid FTIR Spectra on Ag2S Quantum Dots Interfaces. Materials 13:909. https://doi.org/10.3390/ma13040909

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

  • Lapworth D, Baran N, Stuart M, Ward R (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303. https://doi.org/10.1016/j.envpol.2011.12.034

  • Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473. https://doi.org/10.1021/es903490h

  • Li YS, Jiang FL, Xiao Q, Li R, Li K, Zhang MF, Zhang AQ, Sun SF, Liu Y (2010) Enhanced photocatalytic activities of TiO2 nanocomposites doped with water-soluble mercapto-capped CdTe quantum dots. Appl Catal B Environ 101:118–129. https://doi.org/10.1016/j.apcatb.2010.09.016

  • Li TL, Cai CD, Yeh TF, Teng H (2013) Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination. J Alloys Compd 550:326–330. https://doi.org/10.1016/j.jallcom.2012.10.157

  • Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787. https://doi.org/10.1016/j.solmat.2005.11.007

  • Ma C, Liu X, Zhou M, Feng M, Wu Y, Huo P, Pan J, Shi W, Yan Y (2015) Metal ion doped CdSe quantum dots prepared by hydrothermal synthesis: enhanced photocatalytic activity and stability under visible light. Desalin Water Treat 56:2896–2905. https://doi.org/10.1080/19443994.2014.963152

  • Men Q, Wang T, Ma C, Yang L, Liu Y, Huo P, Yan Y (2019) In-suit preparation of CdSe quantum dots/porous channel biochar for improving photocatalytic activity for degradation of tetracycline. J Taiwan Inst Chem Eng 99:180–192. https://doi.org/10.1016/j.jtice.2019.03.019

  • Naseri M, Bafekry A, Faraji M, Hoat DM, Fadlallah MM, Ghergherehchi M, Sabbaghi N, Gogova D (2021) Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting. Phys Chem Chem Phys 23:12226–12232. https://doi.org/10.1039/D1CP00317H

    Article  CAS  PubMed  Google Scholar 

  • Pirom T, Wongsawa T, Wannachod T, Sunsandee N, Pancharoen U, Kheawhom S (2017) Amoxicillin removal from aqueous solutions using hollow fibre supported liquid membrane: kinetic study. Chem Pap 71:1291–1302. https://doi.org/10.1007/s11696-016-0121-4

    Article  CAS  Google Scholar 

  • Pirsaheb M, Moradi S, Shahlaei M, Wang X, Farhadian N (2019) Simultaneously implement of both weak magnetic field and aeration for ciprofloxacin removal by Fenton-like reaction. J Environ Manage 246:776–784. https://doi.org/10.1016/j.jenvman.2019.06.045

  • Rajabi HR, Farsi M (2015) Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization. J Mol Catal A: Chem 399:53–61. https://doi.org/10.1016/j.molcata.2015.01.029

  • Rajabi HR, Khani O, Shamsipur M, Vatanpour V (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J Hazard Mater 250:370–378. https://doi.org/10.1016/j.jhazmat.2013.02.007

  • Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134:2508–2511. https://doi.org/10.1021/ja211224s

  • Shen C, Zhao Y, Yuan L, Ding L, Chen Y, Yang H, Liu S, Nie J, Xiang W, Liang X (2020) Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield. Chem Eng J 382:122868. https://doi.org/10.1016/j.cej.2019.122868

  • Shen Q, Xu MH, Wu T, Pan GX, Tang PS (2021) Adsorption behavior of tetracycline on carboxymethyl starch grafted magnetic bentonite. Chem Pap 1–13. https://doi.org/10.1007/s11696-021-01839-w

  • Sommer ME, Elgeti M, Hildebrand PW, Szczepek M, Hofmann KP, Scheerer P (2015) Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin. Methods Enzymol 556:563–608. https://doi.org/10.1016/bs.mie.2014.12.014

  • Tang B, Niu J, Yu C, Zhuo L, Ge J (2005) Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper (II). Chem Commun 4184–4186. https://doi.org/10.1039/B502978C

  • Wang R, Li B, Dong L, Zhang F, Fan M, Zhou L (2014) Photocatalytic activity of CdTe quantum Dots encapsulated in zeolite Y. Mater Lett 135:99–102. https://doi.org/10.1016/j.matlet.2014.07.112

    Article  CAS  Google Scholar 

  • Wang J, Meng J, Li Q, Yang J (2016) Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting. Phys Chem Chem Phys 18:17029–17036. https://doi.org/10.1039/C6CP01001F

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xia T, Wang L, Zheng X, Qi Z, Gao C, Zhu J, Li Z, Xu H, Xiong Y (2018) Enabling visible-light-driven selective CO2 reduction by doping quantum dots: trapping electrons and suppressing H2 evolution. Angew Chem Int Ed 57:16447–16451. https://doi.org/10.1002/anie.201810550

    Article  CAS  Google Scholar 

  • Xiao FX, Miao J, Liu B (2014) Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J Am Chem Soc 136:1559–1569. https://doi.org/10.1021/ja411651e

  • Xu J, Wang J, Chen Z, Xia X, Li S, Li Z (2019) Boosting photocatalytic hydrogen generation of cadmium telluride colloidal quantum dots by nickel ion doping. J Colloid Interf Sci 549:63–71. https://doi.org/10.1016/j.jcis.2019.04.054

  • Yan M, Zhu F, Gu W, Sun L, Shi W, Hua Y (2016) Construction of nitrogen-doped graphene quantum dots-BiVO4/gC3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light. RSC Adv 6:61162–61174. https://doi.org/10.1039/C6RA07589D

  • Yan M, Hua Y, Zhu F, Gu W, Jiang J, Shen H, Shi W (2017) Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 pn junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl Catal B Environ 202:518–527. https://doi.org/10.1016/j.apcatb.2016.09.039

  • Zarei S, Farhadian N, Akbarzadeh R, Pirsaheb M, Asadi A, Safaei Z (2020) Fabrication of novel 2D Ag-TiO2/γ-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate. Int J Biol Macromol 145:926–935. https://doi.org/10.1016/j.ijbiomac.2019.09.183

  • Zhao H, Liu G, You S, Camargo FV, Zavelani-Rossi M, Wang X, Sun C, Liu B, Zhang Y, Han G (2021) Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ Sci 14:396–406. https://doi.org/10.1039/D0EE02235G

  • Zhuo S, Shao M, Lee ST (2012) Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6:1059–1064. https://doi.org/10.1021/nn2040395

Download references

Acknowledgements

This work was supported by the Kermanshah University of Medical Sciences (Grant No: 980887).

Funding

Deputy for Research and Technology, Kermanshah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajad Moradi or Negin Farhadian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M., Shahlaei, M., Moradi, S. et al. Metal ion-doped CdTe-based quantum dots: preparation, characterization and photocatalytic application. Chem. Pap. 76, 3215–3226 (2022). https://doi.org/10.1007/s11696-022-02063-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02063-w

Keywords

Navigation