Skip to main content
Log in

Green synthesis of adsorbent nanoflowers for efficient removal of toxins

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanoflowers (NFs) are flower-like nanoparticles showing morphological similarity to flower petal in microscopic view between the range of 100–500 nm. NFs show better adsorption efficiency due to high surface-to-volume ratio depending on the morphology and particle size. The objective of the present research work was to prepare adsorbent NFs and to evaluate their adsorption efficiency in comparison with activated charcoal for the removal of toxins. The study focused on NFs as potential adsorbent for the adsorption of chlorpyrifos. Magnetic nanoparticles were prepared using precipitation method, and adsorbent NFs were prepared using ionotropic gelation method. The prepared magnetic nanoparticles and adsorbent NFs were characterized using particle size, zeta potential, surface morphology, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry, thermal behavior, nuclear magnetic resonance, and in vitro adsorption studies. The particle size and zeta potential of iron oxide nanoparticles were found to be 148.9 ± 1.36 nm and 8.93 ± 1.26 mV, and those of adsorbent NFs were 663.7 ± 39.63 nm and − 12.36 ± 1.05 mV, respectively. Transmission electron microscopy images confirmed spherical shape of iron oxide nanoparticles and flower-like shape of adsorbent NFs. ATR-FTIR analysis confirmed the formation of iron oxide nanoparticles and adsorbent NFs. The adsorption of chlorpyrifos using NFs was maximum at pH 7 with the magnetic effect of 517 kOe. Comparative studies showed that NFs (20 mg) possess larger adsorption efficiency of 37.65 ± 0.28% than activated charcoal (400 mg) which showed 31.64 ± 0.44% adsorption for the removal of chlorpyrifos. Adsorbent NFs are a novel nanoformulation for better removal of toxins due to larger surface area and improved adsorption efficacy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devlekar, N.P., Shende, P. Green synthesis of adsorbent nanoflowers for efficient removal of toxins. Chem. Pap. 76, 2209–2219 (2022). https://doi.org/10.1007/s11696-021-02020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-02020-z

Keywords

Navigation