Skip to main content
Log in

Development of a reversed-phase dispersive liquid–liquid microextraction method for the extraction and preconcentration of lead and cadmium ions in some cosmetic products

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In present study, a reversed-phase dispersive liquid–liquid microextraction method followed by flame atomic absorption spectrometry as a low cost, easy operation, high sensitivity, and accuracy analytical approach has been developed for the analysis of lead(II) and cadmium(II) ions in cosmetic samples. For this purpose, the samples were diluted by toluene and then a mixture of diluted nitric acid solution and acetonitrile was used as the extraction solvent and disperser solvent, respectively. Effect of some important parameters on efficiency of the method was investigated to reach high enrichment factors. Under optimum experimental conditions, the calibration curves were linear in the ranges of 10.0–200 and 1.0–175 μg Kg−1 for lead(II) and cadmium(II), respectively. Moreover, relative standard deviations of the developed procedure for intra- (n = 6) and inter-day (n = 4) precisions were in the ranges of 3.4–6.5% ( C= 20 μg Kg−1 of each cation). Eventually, the suggested method was successfully used in analysis of the chosen ions in various cosmetic brands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EF:

Enrichment factor

ER:

Extraction recovery

FAAS:

Flame atomic absorption spectrometry

LOD:

Limit of detection

LOQ:

Limit of quantification

RP-DLLME:

Reversed-phase dispersive liquid–liquid microextraction

References

  • Arpa Ç, Arıdaşır I (2019) Food Chem 284:16

    Article  CAS  Google Scholar 

  • Arshad H, Mehmood MZ, Shah MH, Abbasi AM (2020) Saudi Pharm J 28:779

    Article  CAS  Google Scholar 

  • Ayenimo JG, Yusuf AM, Adekunle AS, Makinde OW (2010) Bull Environ Contam Toxicol 84:8

    Article  CAS  Google Scholar 

  • Balarastaghi S, Khashaiarmanesh Z, Makhdoumi P, Alavizadeh SH, Moghadam ZS, Shirani K, Karimi G (2018) Toxin Rev 37:117

    Article  CAS  Google Scholar 

  • Brandão JDO, Okonkwo OJ, Sehkula M, Raseleka RM (2012) Toxicol Environ Chem 94:70

    Article  Google Scholar 

  • Cadorim HR, Schneider M, Hinz J, Luvizon F, Dias AN, Carasek E, Welz B (2019) Anal Lett 52:2133

    Article  CAS  Google Scholar 

  • Capelli C, Foppiano D, Venturelli G, Carlini E, Magi E, Ianni C (2014) Anal Lett 47:1201

    Article  CAS  Google Scholar 

  • Chamsaz M, Atarodi A, Eftekhari M, Asadpour S, Adibi M (2013) J Adv Res 4:35

    Article  CAS  Google Scholar 

  • de Jesus Ferreira V, Almeida JS, Lemos VA, de Oliveira OM, Garcia KS, Teixeira LS (2021), Talanta 222:121514.

  • Hashemi P, Raeisi F, Ghiasvand AR, Rahimi A (2010) Talanta 80:1926

    Article  CAS  Google Scholar 

  • Kalfa OM, Yalçınkaya Ö, Türker AR (2009) J Hazard Mater 166:455

    Article  CAS  Google Scholar 

  • Kazi TG, Afridi HI, Bhatti M, Akhtar A (2019) Ultrason Sonochem 51:40

    Article  CAS  Google Scholar 

  • Kilic S, Kilic M, Soylak M (2020) Biol Trace Elem Res 2020(199):2272

    Google Scholar 

  • Liu S, Xie Q, Chen J, Sun J, He H, Zhang X (2013) J Chromatogr A 1295:16

    Article  CAS  Google Scholar 

  • Liu Y, Chu Y, Hu Z, Zhang S, Ma S, Khan MS, Chen F, Zhang D, Guo L, Lau C (2020) Microchem J 158:105322.

  • Lourenço EC, Eyng E, Bittencourt PRS, Duarte FA, Picoloto RS, Flores ÉLM (2019) Talanta 199:1

    Article  Google Scholar 

  • Maltez HF, Borges DL, Carasek E, Welz B, Curtius AJ (2008) Talanta 74:800

    Article  CAS  Google Scholar 

  • Massadeh AM, El-khateeb MY, Ibrahim SM (2017) Pub Health 149:130

    Article  CAS  Google Scholar 

  • Michalek IM, Benn EKT, dos Santos FLC, Gordon S, Wen C, Liu B (2019) Environ Res 170:187

    Article  CAS  Google Scholar 

  • Naeemullah, Tuzen M (2019) Talanta 196:71.

  • Narin I, Soylak M, Kayakirilmaz K, Elci L, Dogan M (2003) Anal Lett 36:641

    Article  CAS  Google Scholar 

  • Okamoto M, Kanda M, Matsumoto I, Miya Y (1971) J Soc Cosmet Chem 22:589

    CAS  Google Scholar 

  • Özzeybek G, Şahin İ, Erarpat S, Bakirdere S (2020) J Food Compos Anal 90:103486.

  • Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1

    Article  CAS  Google Scholar 

  • Şahan S, Saçmacı Ş, Şahin U, Ülgen A, Kartal Ş (2010) Talanta 80:2127

    Article  Google Scholar 

  • Sixto A, Mollo A, Knochen M (2019) J Food Compos Anal 82:103229.

  • Sorouraddin SM, Farajzadeh MA, Okhravi T (2019) J Iran Chem Soc 16:1537

    Article  CAS  Google Scholar 

  • Sorouraddin SM, Farajzadeh MA, Okhravi T (2020) J Food Compos Anal 93:103590.

  • Soylak M, Elci L (1997) Int J Environ Anal Chem 66:51

    Article  CAS  Google Scholar 

  • Soylak M, Yilmaz E (2011) Desalination 275:297

    Article  CAS  Google Scholar 

  • Wang W, Bao N, Yuan W, Si N, Bai H, Li H, Zhang Q (2019) Microchem J 148:240

    Article  Google Scholar 

  • Zafarzadeh A, Shahryari A, Taziki S, Ahmadi N, Mirkarimi K, Charkazi A (2018) Natl J Physiol Pharm Pharmacol 8:1200

    Article  CAS  Google Scholar 

  • Zhong Z, Li G, Luo J, Chen W, Liu L, He P, Luo Z (2015) Anal Methods 7:3169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Research Council of the University of Tabriz for financial support.

Funding

Saeed Mohammad Sorouraddin has received research grants from University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammad Sorouraddin.

Ethics declarations

Conflict of interest

Saeed Mohammad Sorouraddin declares that he has no conflict of interest. Mir Ali Farajzadeh declares that he has no conflict of interest. Rana Pinou declares that he has no conflict of interest. Tohid Okhravi declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorouraddin, S.M., Farajzadeh, M.A., Pinou, R. et al. Development of a reversed-phase dispersive liquid–liquid microextraction method for the extraction and preconcentration of lead and cadmium ions in some cosmetic products. Chem. Pap. 76, 2085–2092 (2022). https://doi.org/10.1007/s11696-021-01954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01954-8

Keywords

Navigation