Skip to main content

Advertisement

Log in

Accurate and sensitive determination of cobalt in urine samples using deep eutectic solvent-assisted magnetic colloidal gel-based dispersive solid phase extraction prior to slotted quartz tube equipped flame atomic absorption spectrometry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, a colloidal gel of magnetic Fe3O4 nanoparticles was used in the development of a simple and accurate dispersive solid phase extraction method for the extraction/preconcentration of trace levels of cobalt ions in urine samples. The eluted cobalt ions were determined by slotted quartz tube-flame atomic absorption spectrophotometry (SQT-FAAS). The effects of the type and volume of buffer solution, volume of magnetic colloidal gel, type and period of mixing, concentration and volume of the eluent were investigated and optimized to obtain the best experimental outputs. Under the optimum conditions, the limits of detection and quantification were found as 4.6 and 15 ng mL−1, respectively. The developed method provided a 61.5 folds enhancement in the detection power of the flame atomic absorption spectrophotometry. Method validation was performed by spiking experiments using matrix matching method. The percent recoveries were found to be close to 100% for the spiked samples, which validate the accuracy and the applicability of the developed method to the urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  • Afzali D, Mohammadi SZ (2011) Determination trace amounts of copper, nickel, cobalt and manganese ions in water samples after simultaneous separation and preconcentration. Environ Chem Lett 9(1):115–119. https://doi.org/10.1007/s10311-009-0254-6

    Article  CAS  Google Scholar 

  • Aguirre MÁ, Canals A, López-García I, Hernández-Córdoba M (2020) Determination of cadmium in used engine oil, gasoline and diesel by electrothermal atomic absorption spectrometry using magnetic ionic liquid-based dispersive liquid-liquid microextraction. Talanta 220:121395. https://doi.org/10.1016/j.talanta.2020.121395

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MJ, Uddin MN (2007) A simple spectrophotometric method for the determination of cobalt in industrial, environmental, biological and soil samples using bis(salicylaldehyde)orthophenylenediamine. Chemosphere 67(10):2020–2027. https://doi.org/10.1016/j.chemosphere.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  • Altunay N, Elik A, Gürkan R (2019) Vortex assisted-ionic liquid based dispersive liquid liquid microextraction of low levels of nickel and cobalt in chocolate-based samples and their determination by FAAS. Microchem J 147:277–285. https://doi.org/10.1016/j.microc.2019.03.037

    Article  CAS  Google Scholar 

  • Amin AS (2014) Study on the solid phase extraction and spectrophotometric determination of cobalt with 5-(2-benzothiazolylazo)-8-hydroxyquinolene. Arabian Journal of Chemistry 7(5):715–721. https://doi.org/10.1016/j.arabjc.2010.12.008

    Article  CAS  Google Scholar 

  • Arpa Ç, Arıdaşır I (2019) Ultrasound assisted ion pair based surfactant-enhanced liquid–liquid microextraction with solidification of floating organic drop combined with flame atomic absorption spectrometry for preconcentration and determination of nickel and cobalt ions in vegeta. Food Chem 284:16–22. https://doi.org/10.1016/j.foodchem.2019.01.092

    Article  CAS  PubMed  Google Scholar 

  • Arpa Şahin Ç, Durukan İ (2011) Ligandless-solidified floating organic drop microextraction method for the preconcentration of trace amount of cadmium in water samples. Talanta 85(1):657–661. https://doi.org/10.1016/j.talanta.2011.04.044

    Article  CAS  PubMed  Google Scholar 

  • Arslan Y, Kendüzler E, Ataman OY (2011) Indium determination using slotted quartz tube-atom trap-flame atomic absorption spectrometry and interference studies. Talanta 85(4):1786–1791. https://doi.org/10.1016/j.talanta.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  • Aydin F, Yilmaz E, Soylak M (2015) Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett-Burman and central composite experimental design. RSC Advances 5(115):94879–94886

    Article  CAS  Google Scholar 

  • Aydin Urucu O, Aydin A (2015) Coprecipitation for the Determination of Copper(II), Zinc(II) and Lead(II) in Seawater by Flame Atomic Absorption Spectrometry. Anal Lett 48(11):1767–1776. https://doi.org/10.1080/00032719.2014.999275

    Article  CAS  Google Scholar 

  • Aylin Kasa N, Sel S, Özkan BÇ, Bakırdere S (2019) Determination of palladium in soil samples by slotted quartz tube-flame atomic absorption spectrophotometry after vortex-assisted ligandless preconcentration with magnetic nanoparticle–based dispersive solid-phase microextraction. Environ Monit Assess 191(11):692. https://doi.org/10.1007/s10661-019-7826-0

    Article  CAS  PubMed  Google Scholar 

  • Baghban N, Shabani AMH, Dadfarnia S, Jafari AA (2009) Flame atomic absorption spectrometric determination of trace amounts of cobalt after cloud point extraction as 2-[(2-Mercaptophenylimino)methyl]phenol complex. J Brazil Chem Soc 20:1132

    Article  Google Scholar 

  • Barreto JA, de Assis R, Dos S, Cassella RJ, Lemos VA (2019) A novel strategy based on in-syringe dispersive liquid-liquid microextraction for the determination of nickel in chocolate samples. Talanta 193:23–28

    Article  CAS  Google Scholar 

  • Bartosiak M, Jankowski K, Giersz J (2018) Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction. J Pharm Biomed Anal 155:135–140. https://doi.org/10.1016/j.jpba.2018.03.058

    Article  CAS  PubMed  Google Scholar 

  • Basheer C, Alnedhary AA, Rao BSM, Lee HK (2009) Determination of carbamate pesticides using micro-solid-phase extraction combined with high-performance liquid chromatography. J Chromatogr A 1216(2):211–216

    Article  CAS  Google Scholar 

  • Beiraghi A, Pourghazi K, Amoli-Diva M, Razmara A (2014) Magnetic solid phase extraction of mefenamic acid from biological samples based on the formation of mixed hemimicelle aggregates on Fe3O4 nanoparticles prior to its HPLC-UV detection. J Chromatogr B 945–946:46–52. https://doi.org/10.1016/j.jchromb.2013.11.039

    Article  CAS  Google Scholar 

  • Cai B-D, Zhu J-X, Gao Q, Luo D, Yuan B-F, Feng Y-Q (2014) Rapid and high-throughput determination of endogenous cytokinins in Oryza sativa by bare Fe3O4 nanoparticles-based magnetic solid-phase extraction. J Chromatogr A 1340:146–150. https://doi.org/10.1016/j.chroma.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  • Capiau S, Bolea-Fernandez E, Balcaen L, Van Der Straeten C, Verstraete AG, Vanhaecke F, Stove CP (2020) Development, validation and application of an inductively coupled plasma – mass spectrometry method to determine cobalt in metal-on-metal prosthesis patients using volumetric absorptive microsampling. Talanta 208:120055. https://doi.org/10.1016/j.talanta.2019.06.055

    Article  CAS  PubMed  Google Scholar 

  • Elik A, Altunay N, Gürkan R (2017) Microextraction and preconcentration of Mn and Cd from vegetables, grains and nuts prior to their determination by flame atomic absorption spectrometry using room temperature ionic liquid. J Mol Liq 247:262–268. https://doi.org/10.1016/j.molliq.2017.09.121

    Article  CAS  Google Scholar 

  • Ghoochani-Moghadam A, Rajabi M, Hemmati M, Asghari A (2017) Development of liquid phase microextraction based on effervescence-assisted fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry. J Mol Liq 242:1176–1183

    Article  CAS  Google Scholar 

  • Hsiang M-C, Sung Y-H, Huang S-D (2004) Direct and simultaneous determination of arsenic, manganese, cobalt and nickel in urine with a multielement graphite furnace atomic absorption spectrometer. Talanta 62(4):791–799. https://doi.org/10.1016/j.talanta.2003.09.031

    Article  CAS  PubMed  Google Scholar 

  • Jafarvand S, Shemirani F (2011) Supramolecular–based dispersive liquid–liquid microextraction: A novel sample preparation technique for determination of inorganic species. Microchim Acta 173(3–4):353–359

    Article  CAS  Google Scholar 

  • Jalbani N, Alosmanov RM, Soylak M (2014) Use of modified diethylamine phosphorus-containing polymer for solid phase extraction of cobalt and lead in fruit samples employing flame atomic absorption spectrometry. Atom Spectr 35:163–167

    Article  CAS  Google Scholar 

  • Kajič P, Milošev I, Pihlar B, Pišot V (2003) Determination of trace cobalt concentrations in human serum by adsorptive stripping voltammetry. J Trace Elem Med Biol 17(3):153–158. https://doi.org/10.1016/S0946-672X(03)80019-6

    Article  PubMed  Google Scholar 

  • Kasa NA, Zaman BT, Bakırdere S (2020) Ultra-trace cadmium determination in eucalyptus and rosemary tea samples using a novel method: deep eutectic solvent based magnetic nanofluid liquid phase microextraction-slotted quartz tube-flame atomic absorption spectrometry. J Anal Atom Spectr 35:2565

    Article  CAS  Google Scholar 

  • Kaya G, Yaman M (2008) Online preconcentration for the determination of lead, cadmium and copper by slotted tube atom trap (STAT)-flame atomic absorption spectrometry. Talanta 75(4):1127–1133. https://doi.org/10.1016/j.talanta.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  • Lemos VA, Junior IVS, Santos LB, Barreto JA, Ferreira SLC (2020) A New Simple and Fast Method for Determination of Cobalt in Vitamin B12 and Water Samples Using Dispersive Liquid-Liquid Microextraction and Digital Image Analysis. Water Air Soil Pollut 231(7):334. https://doi.org/10.1007/s11270-020-04680-1

    Article  CAS  Google Scholar 

  • Luz MS, Nascimento AN, Oliveira PV (2013) Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry. Talanta 115:409–413. https://doi.org/10.1016/j.talanta.2013.05.034

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh A, Ramezani M, Ghaedi A (2016) Flotation-assisted dispersive liquid–liquid microextraction method for preconcentration and determination of trace amounts of cobalt: orthogonal array design. J Anal Chem 71(6):535–541. https://doi.org/10.1134/S1061934816060022

    Article  CAS  Google Scholar 

  • Pardasani D, Kanaujia PK, Purohit AK, Shrivastava AR, Dubey DK (2011) Magnetic multi-walled carbon nanotubes assisted dispersive solid phase extraction of nerve agents and their markers from muddy water. Talanta 86:248–255

    Article  CAS  Google Scholar 

  • Pohl P, Dzimitrowicz A, Lesniewicz A, Welna M, Szymczycha-Madeja A, Cyganowski P, Jamroz P (2020) Room temperature solvent extraction for simple and fast determination of total concentration of Ca, Cu, Fe, Mg, Mn and Zn in bee pollen by FAAS along with assessment of the bioaccessible fraction of these elements using in vitro gastrointestinal digestio. J Trace Elem Med Biol 60:126479. https://doi.org/10.1016/j.jtemb.2020.126479

    Article  CAS  PubMed  Google Scholar 

  • Salmani MH, Ehrampoush MH, Eslami H, Eftekhar B (2020) Synthesis, characterization and application of mesoporous silica in removal of cobalt ions from contaminated water. Groundwater Sustain Dev. https://doi.org/10.1016/j.gsd.2020.100425

    Article  Google Scholar 

  • Shirani M, Habibollahi S, Akbari A (2019) Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper and arsenic in food sample. Food Chem 281:304–311. https://doi.org/10.1016/j.foodchem.2018.12.110

    Article  CAS  PubMed  Google Scholar 

  • Taherimaslak Z, Amoli-Diva M, Allahyary M, Pourghazi K (2014) Magnetically assisted solid phase extraction using Fe3O4 nanoparticles combined with enhanced spectrofluorimetric detection for aflatoxin M1 determination in milk samples. Anal Chim Acta 842:63–69. https://doi.org/10.1016/j.aca.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  • Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38(6):1053–1064. https://doi.org/10.1002/jssc.201401347

    Article  CAS  PubMed  Google Scholar 

  • Yousefi SM, Shemirani F, Ghorbanian SA (2017) Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: Application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique. Talanta 168:73–81. https://doi.org/10.1016/j.talanta.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  • Zarei AR, Nedaei M, Ghorbanian SA (2017a) Application of deep eutectic solvent based magnetic colloidal gel for dispersive solid phase extraction of ultra-trace amounts of some nitroaromatic compounds in water samples. J Mol Liq 246:58–65. https://doi.org/10.1016/j.molliq.2017.09.039

    Article  CAS  Google Scholar 

  • Zarei AR, Nedaei M, Ghorbanian SA (2017b) Deep eutectic solvent based magnetic nanofluid in the development of stir bar sorptive dispersive microextraction: An efficient hyphenated sample preparation for ultra-trace nitroaromatic explosives extraction in wastewater. J Sep Sci 40(24):4757–4764. https://doi.org/10.1002/jssc.201700915

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang C, Tyson JF, Vanhaecke F, Köllensperger G, Leach AM, Cornelis R (2004) No Title. Techniques and Methodology, Handbook of Elemental Speciation, pp 241–504

    Google Scholar 

  • Zhou F, Li C, Zhu H, Li Y (2019) Determination of trace ions of cobalt and copper by UV–vis spectrometry in purification process of zinc hydrometallurgy. Optik 184:227–233. https://doi.org/10.1016/j.ijleo.2019.03.056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borahan, T., Zaman, B.T., Özzeybek, G. et al. Accurate and sensitive determination of cobalt in urine samples using deep eutectic solvent-assisted magnetic colloidal gel-based dispersive solid phase extraction prior to slotted quartz tube equipped flame atomic absorption spectrometry. Chem. Pap. 75, 2937–2944 (2021). https://doi.org/10.1007/s11696-021-01542-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01542-w

Keywords

Navigation