Skip to main content
Log in

Comparative investigation on catalytic ozonation of Fluoxetine antidepressant drug in the presence of boehmite and γ-alumina nanocatalysts: operational parameters, kinetics and degradation mechanism studies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Degradation of the Fluoxetine, as commonly used antidepressant pharmaceutical, from aqueous media with different oxidation processes including ozonation and catalytic ozonation (in the presence of nano-boehmite and nano-γ-alumina) was studied in a batch reactor. The catalysts were synthesized via the co-precipitation route. Then, kinetic study of catalytic ozonation process for elimination of Fluoxetine in water was performed. The kinetic of the degradation process was properly fitted to the pseudo first-order equation. The influence of operational parameters, such as pH of solution, scavenger compound (tert-butyl alcohol) and two-type anions (phosphate and nitrate), on Fluoxetine degradation efficiency was studied. The influence of water pH presented that hydroxyl groups of surface are considered as the major active site in the catalytic ozonation of Fluoxetine for the OH radical production in water for nano-boehmite but not for nano-γ-alumina. It was found that the Fluoxetine removal efficiency remarkably increased for catalytic ozonation in comparison with ozonation process in a batch reactor at pH 7. Finally, two-reaction mechanisms were offered for catalytic ozonation of Fluoxetine in aqueous medium by boehmite and γ-alumina nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Rostampour M (2015a) Degradation of antidepressant drug fluoxetine in aqueous media by ozone/H2O2 system: process optimization using central composite design. Environ Technol 36:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Rostampour M (2015b) Modeling and optimization of antidepressant drug fluoxetine removal in aqueous media by ozone/H2O2 process: comparison of central composite design and artificial neural network approaches. J Taiwan Inst Chem Eng 48:40–48

    Article  CAS  Google Scholar 

  • Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Kiadehi AD (2019) Degradation of Fluoxetine using catalytic ozonation in aqueous media in the presence of nano-γ-alumina catalyst: experimental, modeling and optimization study. Sep Purif Technol 211:551–563

    Article  CAS  Google Scholar 

  • Beltrán FJ, Rivas FJ, Fernández LA, Álvarez PM, Montero-de-Espinosa R (2002) Kinetics of catalytic ozonation of oxalic acid in water with activated carbon. Ind Eng Chem Res 41:6510–6517

    Article  CAS  Google Scholar 

  • Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM et al (2003) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142

    Article  CAS  PubMed  Google Scholar 

  • Chedeville O, Di Giusto A, Delpeux S, Cagnon B (2016) Oxidation of pharmaceutical compounds by ozonation and ozone/activated carbon coupling: a kinetic approach. Desalination Water Treat 57:18956–18963

    Article  CAS  Google Scholar 

  • Chuah G, Jaenicke S, Xu T (2000) The effect of digestion on the surface area and porosity of alumina. Microporous Mesoporous Mater 37:345–353

    Article  CAS  Google Scholar 

  • Elovitz MS, von Gunten U, Kaiser H-P (2000) Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties. Ozone. 22:123–150

    Article  CAS  Google Scholar 

  • Fathinia M, Khataee A, Naseri A, Aber S (2015) Monitoring simultaneous photocatalytic-ozonation of mixture of pharmaceuticals in the presence of immobilized TiO2 nanoparticles using MCR-ALS: Identification of intermediates and multi-response optimization approach. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1275–1290

    Article  CAS  Google Scholar 

  • Fathinia M, Khataee A, Aber S, Naseri A (2016) Development of kinetic models for photocatalytic ozonation of phenazopyridine on TiO2 nanoparticles thin film in a mixed semi-batch photoreactor. Appl Catal B 184:270–284

    Article  CAS  Google Scholar 

  • Forouzesh M, Ebadi A, Aghaeinejad-Meybodi A (2019) Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator. Sep Purif Technol 210:145–151

    Article  CAS  Google Scholar 

  • Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914

    Article  CAS  Google Scholar 

  • Ghasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A, Orooji Y (2020) In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J Environ Manage 267:110629

    Article  CAS  PubMed  Google Scholar 

  • Gholami P, Dinpazhoh L, Khataee A, Hassani A, Bhatnagar A (2020a) Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. J Hazard Mater 381:120742

    Article  CAS  PubMed  Google Scholar 

  • Gholami P, Khataee A, Soltani RDC, Dinpazhoh L, Bhatnagar A (2020b) Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@ biochar nanocomposite. J Hazard Mater 382:121070

    Article  CAS  PubMed  Google Scholar 

  • Glaze WH, Kang JW (1989) Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor. Ind Eng Chem Res 28:1573–1580

    Article  CAS  Google Scholar 

  • Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW (2019) Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J Hazard Mater 376:200–211

    Article  CAS  PubMed  Google Scholar 

  • Hassani A, Khataee A, Karaca S, Fathinia M (2016) Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: parametric studies, mechanistic analysis and intermediates identification. RSC Adv 6:87569–87583

    Article  CAS  Google Scholar 

  • Hassani A, Khataee A, Karaca S, Fathinia M (2017) Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: Simultaneous determination and intermediates identification. J Environ Chem Eng 5:1964–1976

    Article  CAS  Google Scholar 

  • Hoigné J, Bader H (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds. Water Res 17:173–183

    Article  Google Scholar 

  • Im J-K, Cho I-H, Kim S-K, Zoh K-D (2012) Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination 285:306–314

    Article  CAS  Google Scholar 

  • Johnson DJ, Sanderson H, Brain RA, Wilson CJ, Solomon KR (2007) Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol Environ Saf 67:128–139

    Article  CAS  PubMed  Google Scholar 

  • Khataee A, Fathinia M, Joo S (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta Part A Mol Biomol Spectrosc 112:33–45

    Article  CAS  Google Scholar 

  • Kiadehi AD, Taghizadeh M (2018) Evaluation of a micro-channel reactor for steam reforming of ethylene glycol: a comparative study of catalytic activity of Pt or/and Ni supported γ-alumina catalysts. Int J Hydrogen Energy 43:4826–4838

    Article  CAS  Google Scholar 

  • Kiadehi AD, Ebadi A, Aghaeinejad-Meybodi A (2017) Removal of methyl tert-butyl ether (MTBE) from aqueous medium in the presence of nano-perfluorooctyl alumina (PFOAL): experimental study of adsorption and catalytic ozonation processes. Sep Purif Technol 182:238–246

    Article  CAS  Google Scholar 

  • Kim I, Tanaka H, Iwasaki T, Takubo T, Morioka T, Kato Y (2008) Classification of the degradability of 30 pharmaceuticals in water with ozone, UV and H2O2. Water Sci Technol 57:195–200

    Article  CAS  PubMed  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  PubMed  Google Scholar 

  • Kostich MS, Batt AL, Lazorchak JM (2014) Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ Pollut 184:354–359

    Article  CAS  PubMed  Google Scholar 

  • Kwon JW, Armbrust KL (2006) Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 25:2561–2568

    Article  CAS  PubMed  Google Scholar 

  • Lam MW, Young CJ, Mabury SA (2005) Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environ Sci Technol 39:513–522

    Article  CAS  PubMed  Google Scholar 

  • Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S et al (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Graham NJ (2000) Degradation of atrazine by manganese-catalysed ozonation—influence of radical scavengers. Water Res 34:3822–3828

    Article  CAS  Google Scholar 

  • Méndez-Arriaga F, Otsu T, Oyama T, Gimenez J, Esplugas S, Hidaka H et al (2011) Photooxidation of the antidepressant drug fluoxetine (Prozac®) in aqueous media by hybrid catalytic/ozonation processes. Water Res 45:2782–2794

    Article  PubMed  CAS  Google Scholar 

  • Miralles-Cuevas S, Audino F, Oller I, Sánchez-Moreno R, Pérez JS, Malato S (2014) Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe (III)–EDDS complex and ozonation). Sep Purif Technol 122:515–522

    Article  CAS  Google Scholar 

  • Nawrocki J, Kasprzyk-Hordern B (2003) Comments on “Solid phase catalytic ozonation process for the destruction of a model pollutant” by DS Pines and DA Reckhow (Ozone Sci. Eng. 25 (2003), 25). OZONE SCIENCE & ENGINEERING. 2003;25:535–8.

  • Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B 99:27–42

    Article  CAS  Google Scholar 

  • Potdar H, Jun K-W, Bae JW, Kim S-M, Lee Y-J (2007) Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl Catal A 321:109–116

    Article  CAS  Google Scholar 

  • Qi F, Chen Z, Xu B, Shen J, Ma J, Joll C et al (2008) Influence of surface texture and acid–base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides. Appl Catal B 84:684–690

    Article  CAS  Google Scholar 

  • Qi F, Xu B, Chen Z, Ma J, Sun D, Zhang L (2009) Influence of aluminum oxides surface properties on catalyzed ozonation of 2, 4, 6-trichloroanisole. Sep Purif Technol 66:405–410

    Article  CAS  Google Scholar 

  • Qi F, Xu B, Chen Z, Feng L, Zhang L, Sun D (2013) Catalytic ozonation of 2-isopropyl-3-methoxypyrazine in water by γ-AlOOH and γ-Al2O3: Comparison of removal efficiency and mechanism. Chem Eng J 219:527–536

    Article  CAS  Google Scholar 

  • Salazar C, Ridruejo C, Brillas E, Yáñez J, Mansilla HD, Sirés I (2017) Abatement of the fluorinated antidepressant fluoxetine (Prozac) and its reaction by-products by electrochemical advanced methods. Appl Catal B 203:189–198

    Article  CAS  Google Scholar 

  • Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Torres-Palma RA (2015) Sonochemical degradation of the pharmaceutical fluoxetine: effect of parameters, organic and inorganic additives and combination with a biological system. Sci Total Environ 524:354–360

    Article  PubMed  CAS  Google Scholar 

  • Shao H-y, Wu M-h, Deng F, Xu G, Liu N, Li X et al (2018) Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices. Chemosphere 190:184–190

    Article  CAS  PubMed  Google Scholar 

  • Von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37:1443–1467

    Article  CAS  Google Scholar 

  • Zhao L, Ma J, Sun Z-z, Zhai X-d (2009) Preliminary kinetic study on the degradation of nitrobenzene by modified ceramic honeycomb-catalytic ozonation in aqueous solution. J Hazardous Materials. 161:988–994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank to the INIC (IRAN Nanotechnology Initiative Council, Iran) for all the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Aghaeinejad-Meybodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaeinejad-Meybodi, A., Ebadi, A., Khataee, A. et al. Comparative investigation on catalytic ozonation of Fluoxetine antidepressant drug in the presence of boehmite and γ-alumina nanocatalysts: operational parameters, kinetics and degradation mechanism studies. Chem. Pap. 75, 421–430 (2021). https://doi.org/10.1007/s11696-020-01312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01312-0

Keywords

Navigation