Optimization of separation conditions
In the first step, the separation conditions were optimized on the basis of the achieved chromatographic resolution. At the beginning, a linear gradient of temperature was applied from 50 to 300 °C with the rate of 8 °C/min. Using this program, compounds eluted in the 9th min (butyl ester of pentanoic acid with decan-2-one, butyl ester of pentanoic acid with undecane), in the 17th min (pentadecane with tridecan-2-one) and in the 24th min (eicosane with octadecan-2-one) were co-eluted. Also, not all hydrocarbons were eluted from the chromatographic column; the last eluted compound was tetratriacontane. To improve the separation, two isothermal plates (at 150 °C and 220 °C) were added and the rate of the gradient in the first part (to 150 °C) was decreased to 5 °C/min. In addition, the final temperature was increased to 320 °C to elute all the n-alkanes to tetracontane. The total ion current chromatogram of the optimized separation is shown in Fig. 1. The unresolved chromatographic peaks were separated using the deconvolution using their specific ion masses (see Table 1).
The stock solution with a concentration of 1 g L−1 was diluted into 6 calibration solutions at concentrations from 0.5 to 50 mg L−1. All the solutions and blank samples (pure hexane) were measured three times under optimized conditions. The quant masses were chosen for each compound (Table 1) and its area was integrated and used to create the calibration curves. The limits of detection and quantification were calculated as treble and tenfold of the signal to noise value, respectively.
Selection of the sorbent materials
Sampling is probably the most critical part of sample preparation. We tested different materials as sorbents, namely glass beads, different textile fabrics, cotton gauze, medical compresses from non-woven fabric or a DNA kit, for the sample collection.
Aratex® is a textile fabric consisting of cotton, viscose and polyester. According to the Czech Police regulations, Aratex® is used as a sorbent for scent sample collection for individual identifications of persons by specially trained dogs (Schoon and Haak 2002). However, our experiments imply that this fabric is not sufficiently cleanable and, therefore, it is unsuitable for instrumental analyses, as shown in Fig. 2. Aratex® contains many impurities and most of them cannot be sufficiently washed out using solvents such as water, hexane and ethanol. Similar results were observed for the sterile cotton gauze used in hospitals (Fig. 2). The nanotextile fabrics could be cleaned better, but contamination was still high (Fig. 3). The most abundant impurities were bis(2-ethylhexyl) hexanedioate, 2-hydroxy-1-(hydroxymethyl)ethyl hexadecanoate, 2-hydroxy-1-(hydroxymethyl) ethyl octadecanoate, and 13-docosenamide). Polypropylene non-woven fabric was the only textile material that had a small amount of impurities after cleaning (Fig. 3). Another tested material, commonly used by the police, was the DNA kit. The problem with this sorbent is the presence of preservatives for the safe storage of biological samples. These compounds are also hard to wash out (Fig. 2). Due to the high amount of the various impurities, these materials were not used for other experiments with the model mixture solution.
The most suitable tested sorbent was glass beads. The great advantage of glass beads is their chemical resistance, which allows the most profound cleaning, e.g., in a chromosulfuric mixture, in different solvents, etc. They are also thermally stable and chemically inert. Figure 2 shows the chromatogram of the hexane extract of the cleaned glass beads. Some impurities are visible between the 40th and 50th min, but these come from the organic solvent. Therefore, this glass sorbent was selected as the most suitable for the collection of the human scent samples.
Selection of the extraction solvents
Four different solvents with various polarities (hexane, ethanol, methanol and acetonitrile) were tested as the solvents for scent compound extraction from the sorbents. Their extraction affinities to all compounds present in the model mixture were compared in terms of their extraction recoveries and their impurities.
In blank samples (pure solvents) which were evaporated to dryness using free evaporation at laboratory temperature, the least amount of impurities occurs in hexane; however, the lowest concentration of impurities was achieved by extraction into acetonitrile.
In the model samples, the best results were achieved in the hexane and ethanol solutions. The results for the acetonitrile solutions were nonhomogeneous and the extraction recoveries were heavily interpretable. Because of these results and its strong toxicity, acetonitrile was excluded as the solvent from the other experiments.
Optimization of solvent evaporation
The evaporation of the solvents described in “Selection of the extraction solvents” was performed by evaporation at laboratory temperature and atmospheric pressure conditions. The main disadvantage of this procedure was its hardly acceptable evaporation time: hexane—1.5 days, ethanol—5 days, methanol—3 days, acetonitrile—3 days.
In an attempt to reduce the evaporation time, the evaporation temperature was increased to 60 °C. This alteration shortened the evaporation times by about 30%. Also, the amount of impurities in the blank extracts was decreased.
Next, evaporation at laboratory temperature and reduced pressure (approx. 100 mbar) was tested. Using reduced pressure, the evaporation time decreased by an additional 85–95%, specifically hexane—3 h, ethanol—4 h, methanol—4 h. This procedure also allowed the preparation of the samples with the lowest occurrence of impurities.
All the compounds’ recoveries obtained at the reduced pressure are listed in Table 1.
Real scent sample analyses
On the basis of our studies with the model mixture (see Fig. 1) containing “scent-like” compounds, the hexane and ethanol solvents were selected for analyses with the real scent samples. These solvents enable the best extraction recoveries with the smallest statistical variance. In addition to this, these solvents are significantly less harmful than methanol and acetonitrile.
The scent samples collected from ten volunteers (5 males and 5 females) were extracted into hexane as well as into ethanol. Using GC–MS (see “Instrumentation”), more than 500 compounds in total have been observed in these 20 samples. In all, 218 different chemical compounds were unambiguously identified, specifically 175 in hexane and 172 in ethanol extracts.
In the real scent samples, all the alkanes from the model mixture (see Table 1; Fig. 1) were identified except octatriacontane, nonatriacontane and tetracontane. All the aldehydes from the model mixture were present. Of the ketones, only decan-2-one and 6,10-dimethyl-5,9-undecadien-2-one (just one from two isomers) were observed and, finally, of the esters, those found were only isopropyl myristate, the butyl ester of octadecanoic acid and the hexadecyl ester of hexadecanoic acid.
Of all the compounds observed in the real scent samples, the compounds present in the scent samples of the majority of the volunteers (no less than in nine of the ten samples in the given solvent) were searched with the aim to delimit the molecules of the primary scent. In all, 28 and 42 such compounds were found in the hexane and the ethanol solutions, respectively. These compounds are listed in Tables 2 and 3. Figure 4 represents an example of a real scent sample chromatogram.
Table 2 List of the compounds identified in real samples extracted into hexane that occurred in at least 9 of the 10 cases Table 3 List of the compounds identified in real samples extracted into ethanol that occurred in at least 9 of the 10 cases