Skip to main content

Advertisement

Log in

Preparation of water-soluble amorphous erbium borate (ErBO3.3H2O) nanoparticles with positive charge

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

We report a simple one-step protocol for the preparation of nearly monodisperse and highly water-soluble erbium borate nanoparticles through a co-precipitation method. Erbium ions were precipitated by boric acid/sodium hydroxide buffer with a pH of 9.2 in the presence of polyethylene glycol (2000 gmol−1) (PEG). As a result of the X-ray diffraction analysis, it was determined that the products that were precipitated in the medium with/without PEG were amorphous and the calcined product has an appropriate pattern for the vaterite-type ErBO3 crystal structure. Infrared spectrophotometer and thermal gravimetric analysis revealed the chemical formulation of the ErBO3.3H2O compound. It was found that partially spherical nanoparticles have a size of 15 ± 6 nm according to TEM images. The average particle size was also measured in the water using dynamic light scattering method. The particles size is equal to about 100 nm in water and the zeta potential of particles is + 41 mV, which indicates a highly stable colloidal solution. Besides ErBO3.3H2O nanoparticles showed strong paramagnetism, their Bohr magnetron number was found as 9.48. Thus, these nanoparticles have promising properties for biomedical applications, such as cell targeting, drug delivery, and bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baudrier-Raybaut M, Haidar R, Kupecek P, Lemasson P, Rosencher E (2004) Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432:374

    Article  CAS  Google Scholar 

  • Cafaggi S et al (2007) Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J Control Release 121:110–123

    Article  CAS  Google Scholar 

  • Ceballos L, Toledano M, Osorio R, Tay F, Marshall G (2002) Bonding to Er-YAG-laser-treated dentin. J Dent Res 81:119–122

    Article  Google Scholar 

  • Dotsenko V, Berezovskaya I, Efryushina N, Voloshinovskii A, Stryganyuk G (2010) Luminescence properties and electronic structure of Sm 3 ± doped YAl 3 B 4 O 12. J Mater Sci 45:1469–1472

    Article  CAS  Google Scholar 

  • Emme H, Huppertz H (2003) High-pressure preparation, crystal structure, and properties of α-(RE) 2B4O9 (RE = Eu, Gd, Tb, Dy): oxoborates displaying a new type of structure with edge-sharing BO4 tetrahedra. Chemi Eur J 9:3623–3633

    Article  CAS  Google Scholar 

  • Fu Y et al (2019) Near-infrared photodetection based on erbium chloride borate nanobelts. Appl Phys Express 12:035001

    Article  Google Scholar 

  • Giesber HG, Ballato J, Pennington WT, Kolis JW (2003) Synthesis and characterization of optically nonlinear and light emitting lanthanide borates. Inf Sci 149:61–68

    Article  Google Scholar 

  • Haley TJ, Koste L, Komesu N, Efros M, Upham H (1966) Pharmacology and toxicology of dysprosium, holmium, and erbium chlorides. Toxicol Appl Pharmacol 8:37–43

    Article  CAS  Google Scholar 

  • Henkes AE, Schaak RE (2008) Synthesis of nanocrystalline REBO3 (RE = Y, Nd, Sm, Eu, Gd, Ho) and YBO3: Eu using a borohydride-based solution precursor route. J Solid State Chem 181:3264–3268

    Article  CAS  Google Scholar 

  • Honary S, Zahir F (2013a) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharma Res 12:255–264

    Google Scholar 

  • Honary S, Zahir F (2013b) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 12:265–273

    Google Scholar 

  • Hosokawa S, Tanaka Y, Iwamoto S, Inoue M (2008) Morphology and structure of rare earth borate (REBO 3) synthesized by glycothermal reaction. J Mater Sci 43:2276–2285

    Article  CAS  Google Scholar 

  • Huppertz H, von der Eltz B, Hoffmann R-D, Piotrowski H (2002) Multianvil high-pressure syntheses and crystal structures of the new rare-earth oxoborates χ-DyBO3 and-χ-ErBO3. J Solid State Chem 166:203–212

    Article  CAS  Google Scholar 

  • Icten O, Kose DA, Zumreoglu-Karan B (2017) Fabrication and characterization of magnetite-gadolinium borate nanocomposites. J Alloy Compd 726:437–444

    Article  CAS  Google Scholar 

  • Kim C-H et al (2000) Phosphors for plasma display panels. J Alloy Compd 311:33–39

    Article  CAS  Google Scholar 

  • Kitagawa T, Hattori K, Shimizu M, Ohmori Y, Kobayashi M (1991) Guided-wave laser based on erbium-doped silica planar lightwave circuit. Electron lett 27:334–335

    Article  Google Scholar 

  • Leng Z, Liu L, Li L, Gan S (2014) Synthesis and luminescent properties of ellipsoid-like YBO3: Ln3 + (Ln = Eu, Tb). Colloids Surf A Physicochem Eng Asp 463:1–7

    Article  CAS  Google Scholar 

  • Li Z, Zeng J, Li Y (2007) Solvothermal route to synthesize well-dispersed YBO3: Eu nanocrystals. Small 3:438–443

    Article  CAS  Google Scholar 

  • Li Z, Zeng Y, Qian H, Long R, Xiong Y (2012) Facile synthesis of GdBO 3 spindle assemblies and microdisks as versatile host matrices for lanthanide doping. CrystEngComm 14:3959–3964

    Article  CAS  Google Scholar 

  • Limbach LK et al (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    Article  CAS  Google Scholar 

  • Liu B, Xiao X, Yu J, Mao D, Lu G (2016) Influence of synthesis conditions on the morphologies of ReBO 3 microstructures and white light emission of YBO 3: Eu 3 + phosphors prepared by an oleic acid-assisted hydrothermal method. Rsc Adv 6:69442–69453

    Article  CAS  Google Scholar 

  • Ma J, Wu Q, Chen Y, Chen Y (2010) A synthesis strategy for various pseudo-vaterite LnBO3 nanosheets via oxides-hydrothermal route. Solid State Sci 12:503–508

    Article  CAS  Google Scholar 

  • McLean T (1960) The absorption edge spectrum of semiconductors. Prog Semicond 5:53–102

    CAS  Google Scholar 

  • Miniscalco WJ (1991) Erbium-doped glasses for fiber amplifiers at 1500 nm. J Lightwave Technol 9:234–250

    Article  CAS  Google Scholar 

  • Moine B, Mugnier J, Boyer D, Mahiou R, Schamm S, Zanchi G (2001) VUV absorption coefficient measurements of borate matrices. J Alloy Compd 323:816–819

    Article  Google Scholar 

  • Mukherjee P, Wu Y, Lampronti G, Dutton SE (2018) Magnetic properties of monoclinic lanthanide orthoborates, LnBO3, Ln = Gd, Tb, Dy, Ho, Er, Yb. Mater Res Bull 98:173–179

    Article  CAS  Google Scholar 

  • Newnham R, Redman M, Santoro R (1963) Crystal structure of Yttrium and other rare-earth borates. J Am Ceram Soc 46:253–256

    Article  CAS  Google Scholar 

  • Oliverio M, Nardi M, Costanzo P, Di Gioia M, Procopio A (2018) Erbium salts as non-toxic catalysts compatible with alternative reaction media. Sustainability 10:721

    Article  Google Scholar 

  • Peak D, Luther GW III, Sparks DL (2003) ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim Cosmochim Acta 67:2551–2560

    Article  CAS  Google Scholar 

  • Pedersen B, Bjarklev A, Povlsen JH, Dybdal K, Larsen CC (1991) The design of erbium-doped fiber amplifiers. J Lightwave Technol 9:1105–1112

    Article  CAS  Google Scholar 

  • Reshak AH, Auluck S, Majchrowski A, Kityk I (2008) Band structure features of nonlinear optical yttrium aluminium borate crystal. Solid State Sci 10:1445–1448

    Article  CAS  Google Scholar 

  • Sarmento B, Mazzaglia D, Bonferoni MC, Neto AP, do Céu Monteiro M, Seabra V (2011) Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym 84:919–925

    Article  CAS  Google Scholar 

  • Schott J et al (2014) Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution. Dalton Trans 43:11516–11528

    Article  CAS  Google Scholar 

  • Terashima K, Tamura S, Kim SH, Yoko T (1997) Structure and nonlinear optical properties of lanthanide borate glasses. J Am Ceram Soc 80:2903–2909

    Article  CAS  Google Scholar 

  • Vleck J (1932) The theory of electric and magnetic susceptibilities. Oxford University, Oxford

    Google Scholar 

  • Xu Z, Li C, Cheng Z, Zhang C, Li G, Peng C, Lin J (2010) Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesis and luminescence properties. CrystEngComm 12:549–557

    Article  CAS  Google Scholar 

  • Yang J, Zhang C, Li C, Yu Y, Lin J (2008) Energy transfer and tunable luminescence properties of Eu3 + in TbBO3 microspheres via a facile hydrothermal process. Inorg Chem 47:7262–7270

    Article  CAS  Google Scholar 

  • Yang R et al (2009) Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci 98:970–984

    Article  CAS  Google Scholar 

  • Zeng Y, Li Z, Liang Y, Gan X, Zheng M (2013) A general approach to spindle-assembled lanthanide borate nanocrystals and their photoluminescence upon Eu3 +/Tb3 + doping. Inorg Chem 52:9590–9596

    Article  CAS  Google Scholar 

Download references

Funding

This work was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Bülbül.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bülbül, B., Beyaz, S. & Akar, M. Preparation of water-soluble amorphous erbium borate (ErBO3.3H2O) nanoparticles with positive charge. Chem. Pap. 74, 1009–1017 (2020). https://doi.org/10.1007/s11696-019-00940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00940-5

Keywords

Navigation