Advertisement

Chemical Papers

, Volume 72, Issue 4, pp 1021–1030 | Cite as

Synthesis and characterization of a perylene derivative and its application as catalyst for ethanol electro-oxidation

  • Paulo José Sousa Maia
  • Elizomar Medeiros Barbosa
  • Maria Leticia Vega
  • Helder Nunes da Cunha
  • Elson Almeida de Souza
  • Flávio Augusto de Freitas
Original Paper

Abstract

Direct ethanol fuel cells (DEFCs) are considered a viable alternative power source for both stationary and mobile applications. Obstacles to widespread use of DEFCs include the slow electro-oxidation kinetics of ethanol, which has been countered by employing combinations of noble metals and organic compounds as catalysts, e.g., a platinum alloy and perylene-3,4:9,10-tetracarboxylic acid derivatives (PDIs). This study investigates the performance of a PDI functionalized with 4-amino pyridine (PDI1) and subsequently dispersed in Pt/C (Pt/C/PDI1) and PtSn/C (PtSn/C/PDI1). The performance of these catalysts in ethanol electro-oxidation (EOR) was compared to that of metallic catalysts (PtSn/C and Pt/C). The forward potential scan indicated that the peak current densities (j) on the catalysts Pt/C/PDI1 and PtSn/C/PDI1 were ~ 1.7 and ~ 1.3-fold that of Pt/C and ~ 1.8 and ~ 1.4-fold that of PtSn/C. Concerning ethanol oxidation, this indicates that Pt/C/PDI1 and PtSn/C/PDI1 exhibit better catalytic activity in EOR than Pt/C and PtSn/C do.

Keywords

Renewable energy Perylene derivatives Electro-oxidation Direct ethanol fuel cells 

Supplementary material

11696_2017_344_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1109 kb)

References

  1. Antolini E (2007a) Platinum-based ternary catalysts for low temperature fuel cells: Part I. Preparation methods and structural characteristics. Appl Catal B 74:324–336CrossRefGoogle Scholar
  2. Antolini E (2007b) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRefGoogle Scholar
  3. Asir S, Demir AS, Icil H (2010) The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dyes Pigm 84(1):1–13CrossRefGoogle Scholar
  4. Benseba F, Farah AA, Wang DS, Bock C, Du XM, Kung J, Page YL (2005) Microwave synthesis of polymer-embedded Pt–Ru catalyst for direct methanol fuel Cell. J Phys Chem B 109(32):15339–15344CrossRefGoogle Scholar
  5. Bshish A, Yaako Z, Narayanan B, Ramakrishnan R, Ebshish A (2011) Steam-reforming of ethanol for hydrogen production. Chem Pap 65(3):251–266CrossRefGoogle Scholar
  6. Cazacu M, Vlad A, Airinei A, Nicolescu A, Stoica I (2011) New imides based on perylene and siloxane derivatives. Dyes Pigm 90(2):106–113CrossRefGoogle Scholar
  7. Choi J-H, Park K-W, Park I-S, Kim K, Lee J-S, Sung Y-E, Choi JH (2006) A PtAu nanoparticle electrocatalyst for methanol electro-oxidation in direct methanol fuel cells. J Electrochem Soc 153:A1812–A1817CrossRefGoogle Scholar
  8. Coiai S, Passaglia E, Pucci A, Ruggeri G (2015) Nanocomposites based on thermoplastic polymers and functional nanofiller for sensor applications. Materials 8:3377–3427.  https://doi.org/10.3390/ma8063377 CrossRefGoogle Scholar
  9. de Souza EA, Giz MJ, Camara GA, Antolini E, Passos RR (2014) Ethanol electro-oxidation on partially alloyed Pt-Sn-Rh/C catalysts. Electrochim Acta 147:483–489CrossRefGoogle Scholar
  10. Echue G, Lloyd-Jones GC, Faul CF (2015) Chiral Perylene Diimides: building blocks for ionic self-assembly. J Chem Eur J 21:5118–5128CrossRefGoogle Scholar
  11. Fang X, Wang LQ, Shen PK, Cui GF, Bianchin C (2010) An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources 195:1375–1378CrossRefGoogle Scholar
  12. Fang Q, Shi X, Wu G, Tian G, Zhu G, Wang R, Qiu S (2013) The synthesis and characterization of a new 3-D inorganic–organic hybrid framework porous material Zn3(bbdc)3(4,4′-bpy)·2(DMF) 4(H2O). J Solid State Chem 176:1–4CrossRefGoogle Scholar
  13. Fernandes VC, Cunha EF, Bonifácio RN, Dresch MA, Doubek G, Santiago EI, Linardi M (2012) Development of technology for producing electrodes and membrane electrode assemblies (meas) by sieve printing method for use in high power pemfc stacks. Quím Nova 35:775–779CrossRefGoogle Scholar
  14. Fishman G, Calecki D (1989) Surface-induced resistivity of ultrathin metallic films: a limit law. Phys Rev Lett 62:1302–1305CrossRefGoogle Scholar
  15. Freitas RG, Marchesi LFQP, Forim MR, Bulhões LOS, Pereira EC, Santos MC, Oliveira RTS (2011) Ethanol Electrooxidation using Ti/(RuO2)(x)Pt(1-x) Electrodes Prepared by the Polymeric Precursor Method. J Braz Chem Soc 22:1709–1717CrossRefGoogle Scholar
  16. Godoi DRM, Perez J, Villullas HM (2010) Alloys and oxides on carbon-supported Pt–Sn electrocatalysts for ethanol oxidation. J Power Sources 195:3394–3401CrossRefGoogle Scholar
  17. Golikan AN, Asgari M, Maragheh MG, Shahrokhian SJ (2006) Methanol electrooxidation on a nickel electrode modified by nickel–dimethylglyoxime complex formed by electrochemical synthesis. J Electroanal Chem 588:155–160CrossRefGoogle Scholar
  18. Golikand AN, Shahrokhian S, Asgari M, Ghannadi M, Khanchi A (2005) Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium. J Power Sources 144:21–27CrossRefGoogle Scholar
  19. Gomes WS, Silva ULV, Souza JPI (2013) Influence of method of preparation of ptru/c electrocatalysts on the catalytic activity for the ethanol oxidation reaction in acidic medium. Quim Nova 36:507–512CrossRefGoogle Scholar
  20. Hana L, Ju H, Xu Y (2012) Ethanol electro-oxidation: cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic oscillation. Int J Hydrog Energy 37:15156–15163CrossRefGoogle Scholar
  21. Hasegawa Y, Miyauchi M, Takashima Y, Yamaguchi H, Harada A (2005) Supramolecular polymers formed from β-cyclodextrins dimer linked by poly(ethylene glycol) and guest dimers. Macromolecules 38:3724–3730CrossRefGoogle Scholar
  22. Hino K, Sato K, Takahashi H, Suzuki S, Mizuguchi J (2005) N, N′-Di-4-pyridylperylene-3,4:9,10-bis(dicarboximide). Acta Cryst. E61:o440–o441Google Scholar
  23. Kaur B, Quazi N, Ivanov I, Bhattacharya SN (2012) Near-infrared reflective properties of perylene derivatives. Dyes Pigm 92:1108–1113CrossRefGoogle Scholar
  24. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger J-M (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908CrossRefGoogle Scholar
  25. Lefebvre D, Tezel FH (2017) A phenomenological approach of solidification of polymeric phase change materials. Renew Sustain Energy Rev 67:116–125.  https://doi.org/10.1063/1.4974287 CrossRefGoogle Scholar
  26. Li F, Yang H, Shan C, Zhang Q, Han D, Ivaska A, Niu L (2009) The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J Mater Chem 19:4022–4025CrossRefGoogle Scholar
  27. Li H, Zhang X, Pang H, Huang C, Chen J (2010) PMo12-functionalized Graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J Solid State Electrochem 14:2267–2274CrossRefGoogle Scholar
  28. Li S, Yang H, Dong Z, Guo S, Zhao J, Gou G, Huang J, Jin J, Ma J (2013) The role of reducing agent in perylene tetracarboxylic acid coating on graphene sheets enhances Pd nanoparticles-electrocalytic ethanol oxidation. Catal Sci Technol 3:2303–2310CrossRefGoogle Scholar
  29. Li Z, He T, Liu L, Chen W, Zhang M, Wu G, Chen P (2017) Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chem Sci 8(1):781–788.  https://doi.org/10.1039/c6sc02456d CrossRefGoogle Scholar
  30. Maia PJS (2017) Synthesis, spectroscopic characterization, photophysical properties of N,-(5-amin-1, 10-phenanthroline) perylene-3, 4, 9, 10-tetracarboximonoimide. IOSR J Appl Chem 10(10):13–20.  https://doi.org/10.9790/5736-1010011320 Google Scholar
  31. Palasantzas G, Zhou YP, Wang GC, Lu TM, Barnas J, De Hosson JThM (2000) Electrical conductivity and thin-film growth dynamics. Phys Rev B 61:11109CrossRefGoogle Scholar
  32. Palma LM, Almeida TS, Leonello PH, Andrade AR (2014) The electrochemical society ethanol electrooxidation by plurimetallic Pt-based electrocatalysts prepared by microwave assisted heating. J Electrochem Soc 161:F473–F479CrossRefGoogle Scholar
  33. Parra MR, Garcia T, Lorenzo E, Pariente F (2008) Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols on glassy carbon electrodes modified with conductive films derived from NiII-(N, N′-bis(2,5-dihydroxybenzylidene)-1,2-diaminobenzene). Sens Actuators b 130:730–738CrossRefGoogle Scholar
  34. Parreira LS, Silva JC, Villa-Silva MD, Simões FC, Garcia S, Gaubeur I, Cordeiro MAL, Leite ER, Santos MC (2013) PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study. Electrochim Acta 96:243–252CrossRefGoogle Scholar
  35. Sieben JM, Duarte MME (2011) Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. Int J Hydrog Energy 36(5):3313–3321CrossRefGoogle Scholar
  36. Silva-Junior LC, Maia G, Passos RR, Souza EA, Camara GAM, Giz J (2013) Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochim Acta 112:612–619CrossRefGoogle Scholar
  37. Stepanenko V, Stocker M, Müller P, Büchnera M, Würthner F (2009) Self-assembly and layer-by-layer deposition of metallosupramolecular perylene bisimide polymers. J Mater Chem 19:6816–6826CrossRefGoogle Scholar
  38. Ticianelli EA, Camara GA, Santos RA (2005) Electrocatalysis of the hydrogen oxidation and oxygen reduction reactions. Quim Nova 28:664–669CrossRefGoogle Scholar
  39. Trevin S, Bedioui F, Villegas M, Gomez G, Bied-Charreton C (1997) Electropolymerized nickel macrocyclic complex-based films: design and electrocatalytic application. J Mater Chem 7:923–928CrossRefGoogle Scholar
  40. Tyson DS, Castellano FN (1999) Intramolecular singlet and triplet energy transfer in a ruthenium(II) diimine complex containing multiple pyrenyl chromophores. J Phys Chem A 103:10955–109660CrossRefGoogle Scholar
  41. Vigier F, Coutanceau C, Perrard A, Belgsir EM, Lamy C (2004) Development of anode catalysts for a direct ethanol fuel cell. J Appl Electrochem 34:439–446CrossRefGoogle Scholar
  42. Wu B, Hu D, Kuang Y, Yu Y, Zhanga X, Chen J (2011) High dispersion of platinum–ruthenium nanoparticles on the 3,4,9,10-perylene tetracarboxylic acid-functionalized carbon nanotubes for methanol electro-oxidation. Chem Commun 47:5253–5255CrossRefGoogle Scholar
  43. Würthner F, Sautter A, Schmid D, Weber PJA (2001) Fluorescent and electroactive cyclic assemblies from perylene tetracarboxylic acid bisimide ligands and metal phosphane triflates. Chem Eur J 7:894–902CrossRefGoogle Scholar
  44. Würthner F, Chen Z, Dehm V, Stepanenko V (2006) One-dimensional luminescent nanoaggregates of perylene bisimides. Chem Commun 11:1188–1190CrossRefGoogle Scholar
  45. Xia XH, Liess H-D, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437:233–240CrossRefGoogle Scholar
  46. Yang X, Liu X, Meng X, Wang X, Li G, Shu C, Jiang L, Wang C (2013) Self-assembly of highly dispersed Pt and PtRu nanoparticles on perylene diimide derivatives functionalized carbon nanotubes as enhanced catalysts for methanol electro-oxidation. J Power Sources 240:536–543CrossRefGoogle Scholar
  47. Zhao YP, Wang G-C, Lu TM (2000) Characterization of amorphous and crystalline roughsurfaces-principles and applications, experimental methods in the physical science, vol 37. Academic Press, CambridgeGoogle Scholar
  48. Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273–285CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Paulo José Sousa Maia
    • 1
    • 2
  • Elizomar Medeiros Barbosa
    • 1
  • Maria Leticia Vega
    • 2
  • Helder Nunes da Cunha
    • 2
  • Elson Almeida de Souza
    • 1
  • Flávio Augusto de Freitas
    • 3
  1. 1.Institute of Exact Sciences and TechnologyFederal University of AmazonasItacoatiaraBrazil
  2. 2.Physics DepartmentFederal University of PiauíTeresinaBrazil
  3. 3.Chemistry DepartmentFederal University of AmazonasManausBrazil

Personalised recommendations