Skip to main content

Advertisement

Log in

Physical properties of aqueous solutions of potassium l-prolinate from 298.15 to 343.15 K at atmospheric pressure

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this paper, experimental physical properties such as density, refractive index, and viscosity of aqueous potassium l-prolinate (KPr) as a solvent for CO2 capture were investigated. Different concentrations of aqueous KPr in terms of mass fractions (0.05, 0.10, 0.20, 0.30, and 0.40) were studied over a temperature range 298.15–343.15 K. The obtained results showed that all physical properties increase with increasing the concentration of the solution (isothermally), and decrease as the solution temperature rises for any given concentration. The experimental data of density, refractive index, and viscosity were correlated using empirical correlations as a function of both, temperature and concentration. Coefficient of thermal expansion and activation energy were calculated from the experimental density and viscosity data, respectively, in the same temperature range. Thermal expansion coefficient slightly increases with increase in the temperature and concentration, while activation energy increases with the rise in concentration of amino acid salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afshar Ghotli R, Abdul Aziz AR, Atadashi IM, Hasan DB, Kong PS, Aroua MK (2015) Selected physical properties of binary mixtures of crude glycerol and methanol at various temperatures. J Ind Eng Chem 21:1039–1043. doi:10.1016/j.jiec.2014.05.013

    Article  CAS  Google Scholar 

  • Ahmadinia E, Zargar M, Karim MR, Abdelaziz M, Shafigh P (2011) Using waste plastic bottles as additive for stone mastic asphalt. Mater Des 32(10):4844–4849. doi:10.1016/j.matdes.2011.06.016

    Article  CAS  Google Scholar 

  • Akbar MM, Murugesan T (2012) Thermophysical properties for the binary mixtures of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [hmim][Tf2N]+N-methyldiethanolamine (MDEA) at temperatures (303.15–323.15) K. J Mol Liq 169:95–101. doi:10.1016/j.molliq.2012.02.014

    Article  CAS  Google Scholar 

  • Aronu UE, Hartono A, Svendsen HF (2011) Kinetics of carbon dioxide absorption into aqueous amine amino acid salt: 3-(methylamino)propylamine/sarcosine solution. Chem Eng Sci 66(23):6109–6119. doi:10.1016/j.ces.2011.08.036

    Article  CAS  Google Scholar 

  • Chang R (2007) Chemistry, 9th edn. McGraw-Hill Inc, New York

    Google Scholar 

  • Chemat F, You HJ, Muthukumar K, Murugesan T (2015) Effect of l-arginine on the physical properties of choline chloride and glycerol based deep eutectic solvents. J Mol Liq 212:605–611. doi:10.1016/j.molliq.2015.10.016

    Article  CAS  Google Scholar 

  • Dawodu OF, Meisen A (1996) Degradation of alkanolamine blends by carbon dioxide. Can J Chem Eng 74(6):960–966. doi:10.1002/cjce.5450740620

    Article  CAS  Google Scholar 

  • Derks PW, Hogendoorn KJ, Versteeg GF (2005) Solubility of N2O in and Density, viscosity, and surface tension of aqueous piperazine solutions. J Chem Eng Data 50(6):1947–1950. doi:10.1021/je050202g

    Article  CAS  Google Scholar 

  • Garcia AAR, Leron RB, Soriano AN, Li M-H (2015) Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid. J Chem Thermodyn 81:136–142. doi:10.1016/j.jct.2014.10.005

    Article  CAS  Google Scholar 

  • Garg S, Shariff A, Shaikh M, Lal B, Aftab A, Faiqa N (2016a) Surface tension and derived surface thermodynamic properties of aqueous sodium salt of l-Phenylalanine. Indian J Sci Technol 9(29). doi:http://dx.doi.org/10.17485/ijst/2016/v9i29/92903

  • Garg S, Shariff AM, Shaikh MS, Lal B, Aftab A, Faiqa N (2016b) Measurement and prediction of physical properties of aqueous sodium salt of l-phenylalanine. J Serbian Chem Soc 81. doi:http://dx.doi.org/10.2298/JSC160222081G

  • Garg S, Shariff AM, Shaikh MS, Lal B, Aftab A, Faiqa N (2016c) Selected physical properties of aqueous potassium salt of l-phenylalanine as a solvent for CO2 capture. Chem Eng Res Des 113:169–181. doi:10.1016/j.cherd.2016.07.015

    Article  CAS  Google Scholar 

  • Garg S, Shariff AM, Shaikh MS, Lal B, Aftab A, Faiqa N (2016d) VLE of CO2 in aqueous potassium salt of l-phenylalanine: experimental data and modeling using modified Kent–Eisenberg model. J Nat Gas Sci Eng 34:864–872. doi:10.1016/j.jngse.2016.07.047

    Article  CAS  Google Scholar 

  • Gouedard C, Picq D, Launay F, Carrette PL (2012) Amine degradation in CO2 capture. I. A review. Int J Greenh Gas Control 10:244–270. doi:10.1016/j.ijggc.2012.06.015

    Article  CAS  Google Scholar 

  • Graber TA, Galleguillos HR, Céspedes C, Taboada ME (2004) Density, refractive index, viscosity, and electrical conductivity in the Na2CO3 + Poly(ethylene glycol) + H2O System from (293.15 to 308.15) K. J Chem Eng Data 49(5):1254–1257. doi:10.1021/je034233s

    Article  CAS  Google Scholar 

  • Hamzehie ME, Najibi H (2016) CO2 solubility in aqueous solutions of potassium prolinate and (potassium prolinate + 2-amino-2-methyl-1-propanol) as new absorbents. J Nat Gas Sci Eng 34:356–365. doi:10.1016/j.jngse.2016.07.004

    Article  CAS  Google Scholar 

  • Hartono A, Aronu UE, Svendsen HF (2011) Liquid speciation study in amine amino acid salts for CO2 absorbent with 13C-NMR. Energy Procedia 4:209–215. doi:10.1016/j.egypro.2011.01.043

    Article  CAS  Google Scholar 

  • Holst JV, Kersten SRA, Hogendoorn KJA (2008) Physiochemical properties of several aqueous potassium amino acid salts. J Chem Eng Data 53(6):1286–1291. doi:10.1021/je700699u

    Article  Google Scholar 

  • Holst JV, Versteeg GF, Brilman DWF, Hogendoorn JA (2009) Kinetic study of CO2 with various amino acid salts in aqueous solution. Chem Eng Sci 64(1):59–68. doi:10.1016/j.ces.2008.09.015

    Article  Google Scholar 

  • Jamal A, Meisen A (2001) Kinetics of CO2 induced degradation of aqueous diethanolamine. Chem Eng Sci 56(23):6743–6760. doi:10.1016/S0009-2509(01)00185-3

    Article  CAS  Google Scholar 

  • Kumagai T, Tanaka K, Fujimura Y, Ono T, Ito F, Katz T, Spuhl O, Tan A (2011) HiPACT–advanced CO2 capture technology for green natural gas exploration. Energy Proc 4:125–132. doi:10.1016/j.egypro.2011.01.032

    Article  CAS  Google Scholar 

  • Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2001) Density, viscosity, solubility, and diffusivity of N2O in aqueous amino acid salt solutions. J Chem Eng Data 46(6):1357–1361. doi:10.1021/je010043a

    Article  CAS  Google Scholar 

  • Lee S, Choi S-I, Maken S, Song H-J, Shin H-C, Park J-W, Jang K-R, Kim J-H (2005) Physical properties of aqueous sodium glycinate solution as an absorbent for carbon dioxide removal. J Chem Eng Data 50(5):1773–1776. doi:10.1021/je050210x

    Article  CAS  Google Scholar 

  • Lu J-G, Fan F, Liu C, Zhang H, Ji Y, Chen M-D (2011) Density, viscosity, and surface tension of aqueous solutions of potassium glycinate + piperazine in the range of (288.15–323.15) K. J Chem Eng Data 56(5):2706–2709. doi:10.1021/je101192x

    Article  CAS  Google Scholar 

  • Majchrowicz ME, Brilman DWF (2012) Solubility of CO2 in aqueous potassium l-prolinate solutions—absorber conditions. Chem Eng Sci 72:35–44. doi:10.1016/j.ces.2011.12.014

    Article  CAS  Google Scholar 

  • Muhammad A, Mutalib MIA, Wilfred CD, Murugesan T, Shafeeq A (2008) Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-Methyldiethanolamine solutions from (298.15 to 338.15) K. J Chem Eng Data 53(9):2226–2229. doi:10.1021/je800282a

    Article  CAS  Google Scholar 

  • Murshid G, Shariff AM, Keong LK, Bustam MA (2011) Physical properties of aqueous solutions of piperazine and (2-Amino-2-methyl-1-propanol + Piperazine) from (298.15 to 333.15) K. J Chem Eng Data 56(5):2660–2663. doi:10.1021/je1012586

    Article  CAS  Google Scholar 

  • Navarro SS, Leron RB, Soriano AN, Li M-H (2014) Thermophysical property characterization of aqueous amino acid salt solution containing serine. J Chem Thermodyn 78:23–31. doi:10.1016/j.jct.2014.05.019

    Article  CAS  Google Scholar 

  • Nuchitprasittichai A, Cremaschi S (2011) Optimization of CO2 capture process with aqueous amines using response surface methodology. Comput Chem Eng 35(8):1521–1531. doi:10.1016/j.compchemeng.2011.03.016

    Article  CAS  Google Scholar 

  • Portugal AF, Sousa JM, Magalhães FD, Mendes A (2009) Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem Eng Sci 64(9):1993–2002. doi:10.1016/j.ces.2009.01.036

    Article  CAS  Google Scholar 

  • Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475. doi:10.1021/es0158861

    Article  CAS  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654. doi:10.1126/science.1176731

    Article  CAS  Google Scholar 

  • Rochelle GT (2012) Thermal degradation of amines for CO2 capture. Curr Opin Chem Eng 1(2):183–190. doi:10.1016/j.coche.2012.02.004

    Article  CAS  Google Scholar 

  • Shaikh MS, Shariff AM, Bustam MA, Murshid G (2013) Physical properties of aqueous blends of sodium glycinate (SG) and piperazine (PZ) as a solvent for CO2 capture. J Chem Eng Data 58(3):634–638. doi:10.1021/je301091z

    Article  CAS  Google Scholar 

  • Shaikh MS, Shariff AM, Bustam MA, Murshid G (2014) Physicochemical properties of aqueous solutions of sodium l-Prolinate as an absorbent for CO2 removal. J Chem Eng Data 59(2):362–368. doi:10.1021/je400830w

    Article  CAS  Google Scholar 

  • Shaikh MS, Shariff AM, Bustam MA, Murshid G (2015) Measurement and prediction of physical properties of aqueous sodium l-prolinate and piperazine as a solvent blend for CO2 removal. Chem Eng Res Des 102:378–388. doi:10.1016/j.cherd.2015.07.003

    Article  CAS  Google Scholar 

  • Shuaib SM, Shariff AM, Bustam MA, Murshid G (2014) Physical properties of aqueous solutions of potassium carbonate + glycine as a solvent for carbon dioxide removal. J Serb Chem Soc 79(6):719–727. doi:10.2298/JSC130818133S

    Article  Google Scholar 

  • Tirona L-A, Leron RB, Soriano AN, Li M-H (2014) Densities, viscosities, refractive indices, and electrical conductivities of aqueous alkali salts of α-alanine. J Chem Thermodyn 77:116–122. doi:10.1016/j.jct.2014.05.014

    Article  CAS  Google Scholar 

  • Van Holst J, Politiek PP, Niederer JP, Versteeg GF (2006) CO2 capture from flue gas using amino acid salt solutions. In: Paper presented at the proceedings of 8th international conference on greenhouse gas control technologies

  • Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12(5):745–769. doi:10.4209/aaqr.2012.05.0132

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Universiti Teknologi PETRONAS for providing the financial support (Grant No. YUTP-FRG-0153AA-E14), and RCOO2C for technical support to complete the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shariff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, M.S., Shariff, A.M., Garg, S. et al. Physical properties of aqueous solutions of potassium l-prolinate from 298.15 to 343.15 K at atmospheric pressure. Chem. Pap. 71, 1185–1194 (2017). https://doi.org/10.1007/s11696-016-0111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0111-6

Keywords

Navigation