Skip to main content
Log in

Rotating disk electrode-based investigation of electroluminescence of tris(2,2′-bipiridin)dichlorruthenium(II)hexahydrate, luminol, and N-(4-aminobuthyl)-N-ethyl-isoluminol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Electrochemically induced luminescence (ECL) is an attractive analytical technique, which could be used for many applications. Introduction of reactants and/or removal of formed products both are very important issues in the most ECL-based systems. The introduction/removal of chemicals could be achieved by flow-through cells. Flow-through cells are not efficient in all designs of ECL systems. Therefore, rotating disk electrode (RDE) could be a valuable alternative, which could increase the efficiency of ECL-based devices. In this work, the RDE was used for the evaluation of electroluminescence of tris(2,2′-bipiridin)dichlorruthenium(II)hexahydrate ([Ru(bpy)3]2+), 5-Amino-2,3-dihydro-1,4-phthalazinedione (luminol), and N-(4-aminobuthyl)-N-ethyl-isoluminol (ABEI). Detection limits, optimal pH and potential values, and emission spectra were determined for each compound.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB, Tyagi SK, Wilkins E, Wu TG, Massey RJ (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37:1534–1539

    CAS  Google Scholar 

  • Dahule HK, Thejokalyani N, Dhoble SJ (2015) Novel Br-DPQ blue light-emitting phosphors for OLED. Luminescence 30:405–410. doi:10.1002/bio.2750

    Article  CAS  Google Scholar 

  • Dodeigne C, Thunus L, Lejeune R (2000) Chemiluminescence as a diagnostic tool. A review. Talanta 51:415–439. doi:10.1016/S0039-9140(99)00294-5

    Article  CAS  Google Scholar 

  • Fähnrich A, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54:531–559. doi:10.1016/S0039-9140(01)00312-5

    Article  Google Scholar 

  • Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated chemiluminescence. Ann Rev Anal Chem 2:359–385. doi:10.1146/annurev-anchem-060908-155305

    Article  CAS  Google Scholar 

  • Gatto-Menking DL, Yu H, Bruno JG, Goode MT, Miller M, Zulich AW (1995) Sensitive detection of biotoxoids and bacterial-spores using an immunomagnetic electrochemiluminescence sensor. Biosens Bioelectron 10:501–507. doi:10.1016/0956-5663(95)96925-O

    Article  CAS  Google Scholar 

  • Gerardi RD, Barnett NW, Lewis SW (1999) Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta 378:1–41. doi:10.1016/S0003-2670(98)00545-5

    Article  CAS  Google Scholar 

  • Guo W, Li J, Chu H, Yan J, Tu Y (2010) Studies on the electrochemiluminescent behavior of luminol on indium tin oxide (ITO) glass. J Luminescence 130:2022–2025. doi:10.1016/j.jlumin.2010.05.020

    Article  CAS  Google Scholar 

  • Haapakka KE (1982) Application of electrogenerated chemiluminescence of luminol to determination of traces of cobalt(II) in aqueous alkaline solution. Anal Chim Acta 139:229–236. doi:10.1016/S0003-2670(01)94000-0

    Article  CAS  Google Scholar 

  • Haapakka KE, Kankare JJ (1982a) Apparatus for mechanistic and analytical studies of the electrogenerated chemiluminescence of luminol. Anal Chim Acta 138:253–262. doi:10.1016/S0003-2670(01)85309-5

    Article  CAS  Google Scholar 

  • Haapakka KE, Kankare JJ (1982b) The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution. Anal Chim Acta 138:263–275. doi:10.1016/S0003-2670(01)85310-1

    Article  CAS  Google Scholar 

  • Håkansson M, Jiang Q, Suomi J, Loikas K, Nauma M, Ala-Kleme T, Kankare J, Juhala P, Eskola JU, Kulmala S (2006) Cathodic electrochemiluminescence at double barrier Al/Al2O3Al/Al2O3 tunnel emission electrodes. Anal Chim Acta 556:450–454. doi:10.1016/j.aca.2005.09.064

    Article  Google Scholar 

  • Handley RS, Akhavan-Tafti H, Schaap AP (1997) Chemiluminescent detection in high volume ligand-binder assays. J Clin Ligand Assay 20:302–312

    Google Scholar 

  • Hellerich ES, Manna E, Heise R, Biswas R, Shinar R, Shinar J (2015) Deep blue/ultraviolet microcavity OLEDs based on solution-processed PVK:cBP blends. Org Electron 24:246–253. doi:10.1016/j.orgel.2015.05.041

    Article  CAS  Google Scholar 

  • Knight AW, Greenway GM (1994) Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence—review. Analyst 119:879–890. doi:10.1039/AN9941900879

    Article  CAS  Google Scholar 

  • Kulmala S, Ala-Kleme T, Kulmala A, Papkovsky D, Loikas K (1998) Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes. Anal Chem 70:1112–1118. doi:10.1021/ac970954g

    Article  CAS  Google Scholar 

  • Kulmala S, Mãtãchescu C, Kulmala A, Papkovsky D, Håkansson M, Ketamo H, Canty P (2002) Chemiluminescence of luminol induced by dissolution of oxide-covered aluminum in alkaline aqueous solution. Anal Chim Acta 453:253–267. doi:10.1016/S0003-2670(01)01491-X

    Article  CAS  Google Scholar 

  • Li H, Xie Ch, Fu X (2013) Electrochemiluminescence sensor for sulfonylurea herbicide with molecular imprinting core–shell nanoparticles/chitosan composite film modified glassy carbon electrode. Sensor Actuat B Chem 181:858–866. doi:10.1016/j.snb.2013.02.094

    Article  CAS  Google Scholar 

  • Marquette CA, Blum LJ (1999) Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 381:1–10. doi:10.1016/S0003-2670(98)00703-X

    Article  CAS  Google Scholar 

  • Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553. doi:10.1021/cr068083a

    Article  CAS  Google Scholar 

  • Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Ramanaviciene A, German N, Kausaite-Minkstimiene A, Voronovic J, Kirlyte J, Ramanavicius A (2012) Comparative study of surface plasmon resonance, electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone. Biosens Bioelectron 36:48–55. doi:10.1016/j.bios.2012.03.036

    Article  CAS  Google Scholar 

  • Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036. doi:10.1021/cr020373d

    Article  CAS  Google Scholar 

  • Rubinstein I, Bard AJ (1981) Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2′-bipyridine)ruthenium(2+) and oxalate or organic acids. J Am Chem Soc 103:512–516. doi:10.1021/ja00393a006

    Article  CAS  Google Scholar 

  • Shahroosvand H, Najafi L, Sousaraei A, Mohajerani E, Janghouri M (2013) Going from green to red electroluminescence through ancillary ligand substitution in ruthenium(II) tetrazole benzoic acid emitters. J Mater Chem 1:6970–6980. doi:10.1039/C3TC31350F

    CAS  Google Scholar 

  • Shahroosvand H, Rezaei S, Mohajerani E, Mahmoudi M (2015) Toward white electroluminescence by ruthenium quinoxaline light emitting diodes. New J Chem 39:3035–3042. doi:10.1039/C4NJ01938E

    Article  CAS  Google Scholar 

  • Song JY, Park SN, Lee SJ, Kim YK, Yoon SS (2015) Novel fluorescent blue-emitting materials based on anthracene-fluorene hybrids with triphenylsilane group for organic light-emitting diodes. Dyes Pigment 114:40–46. doi:10.1016/j.dyepig.2014.11.003

    Article  CAS  Google Scholar 

  • Sunesh ChD, Mathai G, Choe Y (2014) Constructive effects of long alkyl chains on the electroluminescent properties of cationic iridium complex-based light-emitting electrochemical cells. ACS Appl Mater Interfaces 6:17416–17425. doi:10.1021/am5058426

    Article  CAS  Google Scholar 

  • Vera-Jimenez NI, Pietretti D, Wiegertjes GF, Nielsen ME (2013) Comparative study of beta-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 34:1216–1222. doi:10.1016/j.fsi.2013.02.004

    Article  CAS  Google Scholar 

  • Wang ZQ, Liu ChL, Zheng CJ, Wang WZ, Xu Ch, Zhu M, Ji BM, Li F, Zhang XH (2015) Efficient violet non-doped organic light-emitting device based on a pyrene derivative with novel molecular structure. Org Electron 23:179–185. doi:10.1016/j.orgel.2015.04.024

    Article  CAS  Google Scholar 

  • Webb JL, Creamer JI, Quickenden TI (2006) A comparison of the presumptive luminol test for blood with four non-chemiluminescent forensic techniques. Luminescence 21:214–220. doi:10.1002/bio.908

    Article  CAS  Google Scholar 

  • White HS, Bard AJ (1982) Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21-bpy) 2+3 -S2O8 2− system in acetonitrile-water solutions. J Am Chem Soc 104:6891–6895. doi:10.1021/ja00389a001

    Article  CAS  Google Scholar 

  • Wilson R, Schiffrin DJ (1996) Chemiluminescence of luminol catalyzed by electrochemically oxidized ferrocenes. Anal Chem 68:1254–1257. doi:10.1021/ac951023c

    Article  CAS  Google Scholar 

  • Wilson R, Akhavan-Tafti H, DeSilva R, Schaap AP (2001) Comparison between acridan ester, luminol, and ruthenium chelate electrochemiluminescence. Electroanalysis 13:1083–1092. doi:10.1002/1521-4109(200109)13:13<1083:AID-ELAN1083>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Xiao L, Chai Y, Yuan R, Cao Y, Wang H, Bai L (2013) Amplified electrochemiluminescence of luminol based on hybridization chain reaction and in situ generate co-reactant for highly sensitive immunoassay. Talanta 115:577–582. doi:10.1016/j.talanta.2013.06.027

    Article  CAS  Google Scholar 

  • Zhao J, Guo W, Li J, Chu H, Tu Y (2012) Study of the electrochemically generated chemiluminescence of reactive oxygen species on indium tin oxide glass. Electrochim Acta 61:118–123. doi:10.1016/j.electacta.2011.11.109

    Article  CAS  Google Scholar 

  • Zhu L, Li Y, Zhu G (2002) Flow injection determination of dopamine based on inhibited electrochemiluminescence of luminol. Anal Lett 35:2527–2537. doi:10.1081/AL-120016542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scientific grant of the Research Council of Lithuania (Application Registration No. VIZ-TYR-126, 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunas Ramanavicius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juknelevicius, D., Mikoliunaite, L., Ramanaviciene, A. et al. Rotating disk electrode-based investigation of electroluminescence of tris(2,2′-bipiridin)dichlorruthenium(II)hexahydrate, luminol, and N-(4-aminobuthyl)-N-ethyl-isoluminol. Chem. Pap. 71, 905–912 (2017). https://doi.org/10.1007/s11696-016-0010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0010-x

Keywords

Navigation