Skip to main content
Log in

Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium(II)/Tri-n-propylamine with an Electric Contactless Power Transfer System

  • Advancements in Instrumentation
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) analytical device was developed using an electric contactless power transfer system. A mutually induced electromotive voltage was generated by wrapping an enameled wire around a commercial contactless charger. There was no electrical contact between the power supply and the electrochemical cell. For the tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+)/tri-n-propylamine system, a weak ECL signal was observed. When an inexpensive rectifier diode was introduced between the coil and the working electrode, the ECL intensity detection sensitivity increased by more than 100 times. The relationship between the waveform of the applied voltage and the ECL response was clarified, and the optimum conditions were determined. The intensity of the induced electromotive voltage was easily controlled by changing the number of turns in the coil. The proposed method is a safe, simple, and inexpensive technique without electrical contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bi, T. Kan, C. Mi, Y. Zhang, Z. Zhao, and G. Keoleian, Appl. Energy, 2016, 179, 413.

    Article  Google Scholar 

  2. S. Khan, S. Pavuluri, G. Cummins, and M. Desmulliez, Sensors, 2020, 20, 3487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. J. Bard, “Electrogenerated Chemiluminescence“”, 2004, Dekker, New York.

    Book  Google Scholar 

  4. J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen, Anal. Chem., 2011, 83, 1300.

    Article  CAS  PubMed  Google Scholar 

  5. A. Knight, Trends Anal. Chem., 1999, 18, 47.

    Article  CAS  Google Scholar 

  6. W. Miao, Chem. Rev., 2008, 108, 2506.

    Article  CAS  PubMed  Google Scholar 

  7. X. Ma, L. Qi, W. Gao, F. Yuan, Y. Xia, B. Lou, and G. Xu, Electrochim. Acta, 2019, 308, 20.

    Article  CAS  Google Scholar 

  8. W. Qi, J. Lai, W. Gao, S. Li, S. Hanif, and G. Xu, Anal. Chem., 2014, 86, 8927.

    Article  CAS  PubMed  Google Scholar 

  9. L. Qi, Y. Xia, W. Qi, W. Gao, F. Wu, and G. Xu, Anal. Chem., 2016, 88, 1123.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Dai and C. Liu, Angew. Chem. Int. Ed., 2019, 58, 12355.

    Article  CAS  Google Scholar 

  11. X. Yin, S. Dong, and E. Wang, Trends Anal. Chem., 2004, 23, 432.

    Article  CAS  Google Scholar 

  12. F. Takahashi, S. Nitta, R. Shimizu, and J. Jin, Forensic Toxicol., 2018, 36, 185.

    Article  CAS  Google Scholar 

  13. F. Takahashi, R. Shimizu, T. Nakazawa, and J. Jin, Ultrason. Sonochem., 2020, 63, 104947.

    Article  CAS  PubMed  Google Scholar 

  14. H. Li, N. Lopes, S. Moser, G. Sayler, and S. Ripp, Biosens. Bioelectron., 2012, 33, 299.

    Article  PubMed  PubMed Central  Google Scholar 

  15. M. Neves, P. Bobes-Limenes, A. Perez-Junquera, M. B. Gonzalez-Garcia, D. Hernandez-Santos, and P. Fanjul- Bolado, Anal. Bioanal. Chem., 2016, 408, 7121.

    Article  CAS  PubMed  Google Scholar 

  16. W. Dai, W. Zhao, Y. Ma, J. Ye, and J. Jin, Electroanalysis, 2020, 32, 2018.

    Article  CAS  Google Scholar 

  17. W. Lee, Microchim. Acta, 1997, 127, 19.

    Article  CAS  Google Scholar 

  18. R. J. Forster, P. Bertoncello, and T. E. Keyes, Ann. Rev. Anal. Chem., 2009, 2, 359.

    Article  CAS  Google Scholar 

  19. F. Takahashi and J. Jin, Electroanalysis, 2008, 20, 1581.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (C) [Grant Number 20K10553]. Part of this work was supported by the Researcher Assistance Program from the Shinshu University Gender Equality Promotion Centre and discretionary expenses of the Dean of the Faculty of Science of Shinshu University. We are grateful to Mr. Lloyd Teh Tzer Tong, Ms. Ayae Takizawa, and Mr. Ken'ichi Ichikawa for their cooperative involvement in designing and implementing the MPPC experimental device ECL measurements. We thank Gabrielle David, PhD, from Edanz Group (https://en-author-services. edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiki Takahashi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, F., Tanaka, R., Arai, Y. et al. Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium(II)/Tri-n-propylamine with an Electric Contactless Power Transfer System. ANAL. SCI. 37, 1309–1313 (2021). https://doi.org/10.2116/analsci.21A002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21A002

Keywords

Navigation