Skip to main content

Advertisement

Log in

The Impact of Metabolic and Bariatric Surgery on Apo B100 Levels in Individuals with high BMI: A Multi-Centric Prospective Cohort Study

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Metabolic and Bariatric surgery (MBS) leads to significant weight loss and improvements in obesity-related comorbidities. However, the impact of MBS on Apolipoprotein B100 (Apo-B100) regulation is unclear. Apo-B100 is essential for the assembly and secretion of serum lipoprotein particles. Elevated levels of these factors can accelerate the development of atherosclerotic plaques in blood vessels. This study aimed to evaluate changes in Apo-B100 levels following MBS.

Methods

121 participants from the Iranian National Obesity and Metabolic Surgery Database (INOSD) underwent Laparoscopic Sleeve Gastrectomy (LSG) (n = 43), One-Anastomosis Gastric Bypass (OAGB) (n = 70) or Roux-en-Y Gastric Bypass (RYGB) (n = 8). Serum Apo-B100, lipid profiles, liver enzymes, and fasting glucose were measured preoperatively and six months postoperatively.

Results

Apo-B100 levels significantly decreased from 94.63 ± 14.35 mg/dL preoperatively to 62.97 ± 19.97 mg/dL after six months (p < 0.01), alongside reductions in total cholesterol, triglycerides, LDL, VLDL, AST, and ALT (p < 0.05). Greater Apo-B100 reductions occurred in non-diabetics versus people with diabetes (p = 0.012) and strongly correlated with baseline Apo-B100 (r = 0.455, p < 0.01) and LDL levels (r = 0.413, p < 0.01). However, surgery type did not impact Apo-B100 changes in multivariate analysis (p > 0.05).

Conclusion

Bariatric surgery leads to a significant reduction in Apo-B100 levels and improvements in lipid profiles and liver enzymes, indicating a positive impact on dyslipidemia and cardiovascular risk in individuals with high BMI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available on request. Contact the corresponding author in case of necessity.

References

  1. Li Q, Blume SW, Huang JC, Hammer M, Ganz ML. Prevalence and healthcare costs of obesity-related comorbidities: evidence from an electronic medical records system in the United States. J Med Econ. 2015;18:1020–8.

    Article  PubMed  Google Scholar 

  2. Powell-Wiley TM, Poirier P, Burke LE, Després J-P, Gordon-Larsen P, Lavie CJ, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation [Internet]. 2021 [cited 2023 Dec 11];143. Available from: https://www.ahajournals.org/doi/https://doi.org/10.1161/CIR.0000000000000973.

  3. Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am. 2003;32:805–22.

    Article  PubMed  Google Scholar 

  4. Antza C, Kostopoulos G, Mostafa S, Nirantharakumar K, Tahrani A. The links between sleep duration, obesity and type 2 diabetes mellitus. J Endocrinol. 2022;252:125–41.

    Article  CAS  Google Scholar 

  5. Yücel KB, Aydos U, Sütcüoglu O, Kılıç ACK, Özdemir N, Özet A, et al. Visceral obesity and sarcopenia as predictors of efficacy and hematological toxicity in patients with metastatic breast cancer treated with CDK 4/6 inhibitors. Cancer Chemother Pharmacol [Internet]. 2024 [cited 2024 Mar 12]; Available from: https://link.springer.com/https://doi.org/10.1007/s00280-024-04641-z

  6. Gałązka JK, Czeczelewski M, Kucharczyk T, Szklener K, Mańdziuk S. Obesity and lung cancer – is programmed death ligand-1 (PD-1L) expression a connection? Arch Med Sci. 2024;20:313–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, et al. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol. 2024;99:24–44.

    Article  CAS  PubMed  Google Scholar 

  8. Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022;22:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jang S, Lee K, Ju JH. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. IJMS. 2021;22:2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morandini HAE, Watson P, Stewart RM, Wong JWY, Rao P, Zepf FD. Implication of saturated fats in the aetiology of childhood attention deficit/hyperactivity disorder – A narrative review. Clinical Nutr ESPEN. 2022;52:78–85.

    Article  Google Scholar 

  11. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019;92:71–81.

    Article  CAS  PubMed  Google Scholar 

  12. Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients. 2021;13:4176.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Franssen R, Monajemi H, Stroes ESG, Kastelein JJP. Obesity and Dyslipidemia. Med Clin North Am. 2011;95:893–902.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol-Endocrinol Metab. 2009;297:E271–88.

    Article  CAS  PubMed  Google Scholar 

  15. Au DT, Strickland DK, Muratoglu SC. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling. J Diabetes Res. 2017;2017:1–10.

    Article  Google Scholar 

  16. Nilsson J, Björkbacka H, Fredrikson GN. Apolipoprotein B100 autoimmunity and atherosclerosis – disease mechanisms and therapeutic potential. Curr Opin Lipidol. 2012;23:422–8.

    Article  CAS  PubMed  Google Scholar 

  17. Skålén K, Gustafsson M, Rydberg EK, Hultén LM, Wiklund O, Innerarity TL, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature. 2002;417:750–4.

    Article  PubMed  Google Scholar 

  18. Morita S. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull. 2016;39:1–24.

    Article  CAS  PubMed  Google Scholar 

  19. LaFramboise WA, Dhir R, Kelly LA, Petrosko P, Krill-Burger JM, Sciulli CM, et al. Serum protein profiles predict coronary artery disease in symptomatic patients referred for coronary angiography. BMC Med. 2012;10:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal’s usual peer review process. Biochem Cell Biol. 2010;88:251–67.

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of lipoprotein (a). J Lipid Res. 2016;57:1339–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matveyenko A, Seid H, Kim K, Ramakrishnan R, Thomas T, Matienzo N, et al. Association of free-living diet composition with plasma lipoprotein(a) levels in healthy adults. Lipids Health Dis. 2023;22:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsu JL, Farrell TM. Updates in bariatric surgery. Am Surg. 2024;90(5):925–33. https://doi.org/10.1177/00031348231220576.

  24. Železnik U, Kokol P, Starc J, Železnik D, Završnik J, Vošner HB. Research Trends in Motivation and Weight Loss: A Bibliometric-Based Review. Healthcare. 2023;11:3086.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Esparham A, Roohi S, Ahmadyar S, Dalili A, Moghadam HA, Torres AJ, et al. The Efficacy and Safety of Laparoscopic Single-Anastomosis Duodeno-ileostomy with Sleeve Gastrectomy (SADI-S) in Mid- and Long-Term Follow-Up: a Systematic Review. Obes Surg. 2023;33:4070–9.

    Article  PubMed  Google Scholar 

  26. Kermansaravi M, Shahmiri SS, Khalaj A, Jalali SM, Amini M, Alamdari NM, Mahmoudieh M, Jangjoo A, Abbas SI, Naeini SMM, Sayadishahraki M, Eghbali F, Mirhashemi SH, Mokhber S, Jazi AD, Pazouki A. The First Web-Based Iranian National Obesity and Metabolic Surgery Database (INOSD). Obes Surg. 2022;32(6):2083–6. https://doi.org/10.1007/s11695-022-06014-y.

    Article  PubMed  Google Scholar 

  27. Kjellmo CA, Karlsson H, Nestvold TK, Ljunggren S, Cederbrant K, Marcusson-Ståhl M, et al. Bariatric surgery improves lipoprotein profile in morbidly obese patients by reducing LDL cholesterol, apoB, and SAA/PON1 ratio, increasing HDL cholesterol, but has no effect on cholesterol efflux capacity. J Clin Lipidol. 2018;12:193–202.

    Article  PubMed  Google Scholar 

  28. Angrisani L, Santonicola A, Iovino P, Palma R, Kow L, Prager G, et al. IFSO Worldwide Survey 2020–2021: Current Trends for Bariatric and Metabolic Procedures. OBES SURG [Internet]. 2024 [cited 2024 Mar 7]; Available from: https://link.springer.com/https://doi.org/10.1007/s11695-024-07118-3.

  29. Salminen P, Kow L, Aminian A, Kaplan LM, Nimeri A, Prager G, et al. IFSO Consensus on Definitions and Clinical Practice Guidelines for Obesity Management—an International Delphi Study. Obes Surg. 2024;34:30–42.

    Article  PubMed  Google Scholar 

  30. Sharaiha RZ, Shikora S, White KP, Macedo G, Toouli J, Kow L. Summarizing Consensus Guidelines on Obesity Management: A Joint, Multidisciplinary Venture of the International Federation for the Surgery of Obesity & Metabolic Disorders (IFSO) and World Gastroenterology Organisation (WGO). J Clin Gastroenterol. 2023;57:967–76.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yadav R, Hama S, Liu Y, Siahmansur T, Schofield J, Syed AA, et al. Effect of Roux-en-Y Bariatric Surgery on Lipoproteins, Insulin Resistance, and Systemic and Vascular Inflammation in Obesity and Diabetes. Front Immunol. 2017;8:1512.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, et al. Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA Cardiol. 2019;4:1287.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.

    Article  CAS  PubMed  Google Scholar 

  34. English WJ, Spann MD, Aher CV, Williams DB. Cardiovascular risk reduction following metabolic and bariatric surgery. Ann Transl Med. 2020;8:S12–S12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sjöström L. Review of the key results from the Swedish Obese Subjects ( SOS ) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    Article  PubMed  Google Scholar 

  36. Iqbal Z, Bashir B, Adam S, Ho JH, Dhage S, Azmi S, et al. Glycated apolipoprotein B decreases after bariatric surgery in people with and without diabetes: A potential contribution to reduction in cardiovascular risk. Atherosclerosis. 2022;346:10–7.

    Article  CAS  PubMed  Google Scholar 

  37. Dhingra R, Vasan RS. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc Med. 2017;27:123–33.

    Article  CAS  PubMed  Google Scholar 

  38. Behbodikhah J, Ahmed S, Elyasi A, Kasselman LJ, De Leon J, Glass AD, et al. Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites. 2021;11:690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, MaS Alcaraz-Tafalla, Aragón-Alonso A, Pascual-Díaz M, et al. Obesity and Inflammation: Change in Adiponectin, C-Reactive Protein, Tumour Necrosis Factor-Alpha and Interleukin-6 After Bariatric Surgery. Obes Surg. 2012;22:950–5.

    Article  PubMed  Google Scholar 

  40. Casimiro I, Hanlon EC, White J, De Leon A, Ross R, Moise K, et al. Reduction of IL-6 gene expression in human adipose tissue after sleeve gastrectomy surgery. Obes Sci Pract. 2020;6:215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jamialahmadi T, Abbasifard M, Reiner Ž, Kesharwani P, Sahebkar A. The Effect of Bariatric Surgery on Circulating Levels of Monocyte Chemoattractant Protein-1: A Systematic Review and Meta-Analysis. JCM. 2022;11:7021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piché M-E, Tardif I, Auclair A, Poirier P. Effects of bariatric surgery on lipid-lipoprotein profile. Metabolism. 2021;115: 154441.

    Article  PubMed  Google Scholar 

  43. Bays HE, Jones PH, Jacobson TA, Cohen DE, Orringer CE, Kothari S, et al. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT. J Clin Lipidol. 2016;10:33–57.

    Article  PubMed  Google Scholar 

  44. Heneghan HM, Huang H, Kashyap SR, Gornik HL, McCullough AJ, Schauer PR, et al. Reduced cardiovascular risk after bariatric surgery is linked to plasma ceramides, apolipoprotein-B100, and ApoB100/A1 ratio. Surg Obes Relat Dis. 2013;9:100–7.

    Article  PubMed  Google Scholar 

  45. Ikramuddin S, Korner J, Lee W-J, Thomas AJ, Connett JE, Bantle JP, et al. Lifestyle Intervention and Medical Management With vs Without Roux-en-Y Gastric Bypass and Control of Hemoglobin A 1c, LDL Cholesterol, and Systolic Blood Pressure at 5 Years in the Diabetes Surgery Study. JAMA. 2018;319:266.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berk KA, Borgeraas H, Narverud I, Mulder MT, Øyri LKL, Verhoeven AJM, et al. Differential effects of bariatric surgery and lifestyle interventions on plasma levels of Lp(a) and fatty acids. Lipids Health Dis. 2022;21:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Courcoulas AP, Gallagher JW, Neiberg RH, Eagleton EB, DeLany JP, Lang W, et al. Bariatric Surgery vs Lifestyle Intervention for Diabetes Treatment: 5-Year Outcomes From a Randomized Trial. J Clin Endocrinol Metab. 2020;105:866–76.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes — 5-Year Outcomes. N Engl J Med. 2017;376:641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59:945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-Year Outcomes of Bariatric Surgery vs Lifestyle Intervention for Type 2 Diabetes Mellitus Treatment: A Randomized Clinical Trial. JAMA Surg. 2015;150:931.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ho JH, Adam S, Liu Y, Azmi S, Dhage S, Syed AA, et al. Effect of bariatric surgery on plasma levels of oxidised phospholipids, biomarkers of oxidised LDL and lipoprotein(a). J Clin Lipidol. 2021;15:320–31.

    Article  PubMed  Google Scholar 

  52. Hasan B, Nayfeh T, Alzuabi M, Wang Z, Kuchkuntla AR, Prokop LJ, et al. Weight Loss and Serum Lipids in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2020;105:3695–703.

    Article  Google Scholar 

  53. Maciejewski ML, Arterburn DE, Van Scoyoc L, Smith VA, Yancy WS, Weidenbacher HJ, et al. Bariatric Surgery and Long-term Durability of Weight Loss. JAMA Surg. 2016;151:1046.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arterburn DE, Johnson E, Coleman KJ, Herrinton LJ, Courcoulas AP, Fisher D, et al. Weight Outcomes of Sleeve Gastrectomy and Gastric Bypass Compared to Nonsurgical Treatment. Ann Surg. 2021;274:e1269–76.

    Article  PubMed  Google Scholar 

  55. Slomski A. Weight Loss Is Still Substantial a Decade After Bariatric Surgery. JAMA. 2022;328:415.

    PubMed  Google Scholar 

  56. Van Veldhuisen SL, Gorter TM, Van Woerden G, De Boer RA, Rienstra M, Hazebroek EJ, et al. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2022;43:1955–69.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Benraouane F, Litwin SE. Reductions in cardiovascular risk after bariatric surgery. Curr Opin Cardiol. 2011;26:555–61.

    Article  PubMed  Google Scholar 

  58. Doumouras AG, Wong JA, Paterson JM, Lee Y, Sivapathasundaram B, Tarride J-E, et al. Bariatric Surgery and Cardiovascular Outcomes in Patients With Obesity and Cardiovascular Disease: A Population-Based Retrospective Cohort Study. Circulation. 2021;143:1468–80.

    Article  CAS  PubMed  Google Scholar 

  59. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric Surgery and Long-term Cardiovascular Events. JAMA. 2012;307:56.

    Article  PubMed  Google Scholar 

  60. Bottino R, Carbone A, Formisano T, D’Elia S, Orlandi M, Sperlongano S, et al. Cardiovascular Effects of Weight Loss in Obese Patients with Diabetes: Is Bariatric Surgery the Additional Arrow in the Quiver? Life. 2023;13:1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei J-H, Lee M-H, Lee W-J, Chen S-C, Almalki OM, Chen J-C, et al. Change of cardiovascular risk associated serologic biomarkers after gastric bypass: A comparison of diabetic and non-diabetic Asian patients. Asian J Surg. 2022;45:2253–8.

    Article  PubMed  Google Scholar 

  62. Syn NL, Cummings DE, Wang LZ, Lin DJ, Zhao JJ, Loh M, et al. Association of metabolic–bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. Lancet. 2021;397:1830–41.

    Article  PubMed  Google Scholar 

  63. Maraninchi M, Padilla N, Béliard S, Berthet B, Nogueira J-P, Dupont-Roussel J, et al. Impact of bariatric surgery on apolipoprotein C-III levels and lipoprotein distribution in obese human subjects. J Clin Lipidol. 2017;11:495-506.e3.

    Article  PubMed  Google Scholar 

  64. Gómez-Martin JM, Balsa JA, Aracil E, Cuadrado-Ayuso M, Rosillo M, De La Peña G, et al. Beneficial changes on plasma apolipoproteins A and B, high density lipoproteins and oxidized low density lipoproteins in obese women after bariatric surgery: comparison between gastric bypass and sleeve gastrectomy. Lipids Health Dis. 2018;17:145.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gomes-Rocha SR, Costa-Pinho AM, Pais-Neto CC, De Araújo PA, Nogueiro JPM, Carneiro SPR, et al. Roux-en-Y Gastric Bypass Vs Sleeve Gastrectomy in Super Obesity: a Systematic Review and Meta-Analysis. Obes Surg. 2022;32:170–85.

    Article  PubMed  Google Scholar 

  66. Coleman KJ, Basu A, Barton LJ, Fischer H, Arterburn DE, Barthold D, et al. Remission and Relapse of Dyslipidemia After Vertical Sleeve Gastrectomy vs Roux-en-Y Gastric Bypass in a Racially and Ethnically Diverse Population. JAMA Netw Open. 2022;5: e2233843.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lobo LM, Nogueira JP, Clos C, Masson W, Molinero G, Lavalle Cobo A, et al. Effectiveness of roux-en-Y gastric bypass vs sleeve gastrectomy on lipid levels in type 2 diabetes: a meta-analysis. Eur Heart J. 2022;43:ehac544.2345.

    Article  Google Scholar 

  68. Han Y, Jia Y, Wang H, Cao L, Zhao Y. Comparative analysis of weight loss and resolution of comorbidities between laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass: A systematic review and meta-analysis based on 18 studies. Int J Surg. 2020;76:101–10.

    Article  PubMed  Google Scholar 

  69. Aaseth JO, Rootwelt H, Retterstøl K, Hestad K, Farup PG. Circulating Lipoproteins in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients. 2022;14:2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khalaj A, Tasdighi E, Hosseinpanah F, Mahdavi M, Valizadeh M, Farahmand E, et al. Two-year outcomes of sleeve gastrectomy versus gastric bypass: first report based on Tehran obesity treatment study (TOTS). BMC Surg. 2020;20:160.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bettini S, Segato G, Prevedello L, Fabris R, Prà CD, Zabeo E, et al. Improvement of Lipid Profile after One-Anastomosis Gastric Bypass Compared to Sleeve Gastrectomy. Nutrients. 2021;13:2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Al Khalifa K, Al Ansari A, Alsayed AR, Violato C. The Impact of Sleeve Gastrectomy on Hyperlipidemia: A Systematic Review. J Obes. 2013;2013:1–7.

    Article  Google Scholar 

  73. Elshazly MB, Quispe R. The Lower the ApoB, the Better: Now, How Does ApoB Fit in the Upcoming Era of Targeted Therapeutics? Circulation. 2022;146:673–5.

    Article  PubMed  Google Scholar 

  74. Contois JH, Langlois MR, Cobbaert C, Sniderman AD. Standardization of Apolipoprotein B, LDL-Cholesterol, and Non-HDL-Cholesterol. JAHA. 2023;12: e030405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marston NA, Giugliano RP, Melloni GEM, Park J-G, Morrill V, Blazing MA, et al. Association of Apolipoprotein B-Containing Lipoproteins and Risk of Myocardial Infarction in Individuals With and Without Atherosclerosis: Distinguishing Between Particle Concentration, Type, and Content. JAMA Cardiol. 2022;7:250.

    Article  PubMed  Google Scholar 

  76. Lawler PR, Akinkuolie AO, Ridker PM, Sniderman AD, Buring JE, Glynn RJ, et al. Discordance between Circulating Atherogenic Cholesterol Mass and Lipoprotein Particle Concentration in Relation to Future Coronary Events in Women. Clin Chem. 2017;63:870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahmad M, Sniderman AD, Hegele RA. Apolipoprotein B in cardiovascular risk assessment. CMAJ. 2023;195:E1124.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation [Internet]. 2019 [cited 2024 Apr 3];140. Available from: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000677.

  79. Pearson GJ, Thanassoulis G, Anderson TJ, Barry AR, Couture P, Dayan N, et al. 2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults. Can J Cardiol. 2021;37:1129–50.

    Article  PubMed  Google Scholar 

  80. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.

    Article  PubMed  Google Scholar 

  81. Bays H, Kothari SN, Azagury DE, Morton JM, Nguyen NT, Jones PH, et al. Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA). Surg Obes Related Dis. 2016;12:468–95.

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that there are no conflicts of interest related to the content of this manuscript. All authors have provided explicit disclosure of any potential conflicts, that could influence the interpretation of the data or the presentation of information. this study received no financial support from any external sources. The research was conducted independently, and the authors did not receive funding or sponsorship that could have influenced the outcomes or conclusions drawn from the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foolad Eghbali.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest related to the content of this manuscript. All authors have provided explicit disclosure of any potential conflicts, that could influence the interpretation of the data or the presentation of information.

Ali Jaliliyan: “No Conflict of interests”, Ahmad Madankan: “No Conflict of interests”, Hesam Mosavari: “No Conflict of interests”, Pantea Khalili: “No Conflict of interests”, Bahador Pouraskari: “No Conflict of interests”, Saeed Lotfi: “No Conflict of interests”, Andia Honarfar: “No Conflict of interests”, Elham Fakhri: “No Conflict of interests”, Foolad Eghbali: “No Conflict of interests”.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Research Ethics Committees of Iran University of Medical Sciences and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Keypoints

• Serum Apo-B100 concentration decreases significantly after metabolic and bariatric surgery.

• Apo-B100 reduction in individuals with diabetes is significantly lower than in non-diabetics.

• Surgery type does not impact the Apo-B100 reduction after metabolic and bariatric surgery.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaliliyan, A., Madankan, A., Mosavari, H. et al. The Impact of Metabolic and Bariatric Surgery on Apo B100 Levels in Individuals with high BMI: A Multi-Centric Prospective Cohort Study. OBES SURG (2024). https://doi.org/10.1007/s11695-024-07258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11695-024-07258-6

Keywords

Navigation