Skip to main content

Advertisement

Log in

The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2024

This article has been updated

Abstract

Purpose

Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied.

Methods

A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks.

Results

After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis.

Conclusion

Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Gasmi A, et al. Micronutrients deficiences in patients after bariatric surgery. Eur J Nutr. 2022;61(1):55–67.

    Article  PubMed  Google Scholar 

  2. Kushner R. Managing the obese patient after bariatric surgery: a case report of severe malnutrition and review of the literature. JPEN J Parenter Enteral Nutr. 2000;24(2):126–32.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  3. Lim CH, et al. The future of the Roux-en-Y gastric bypass. Expert Rev Gastroenterol Hepatol. 2016;10(7):777–84.

    Article  CAS  PubMed  Google Scholar 

  4. Nance K, Acevedo MB, Pepino MY. Changes in taste function and ingestive behavior following bariatric surgery. Appetite. 2020;146:104423.

    Article  PubMed  Google Scholar 

  5. Mathes CM. Taste- and flavor-guided behaviors following Roux-en-Y gastric bypass in rodent models. Appetite. 2020;146:104422.

    Article  PubMed  Google Scholar 

  6. Jackness C, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and beta-cell function in type 2 diabetic patients. Diabetes. 2013;62(9):3027–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshino M, et al. Effects of diet versus gastric bypass on metabolic function in diabetes. N Engl J Med. 2020;383(8):721–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fischer IP, et al. A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue. Int J Obes. 2018;42(3):507–17 (Lond).

    Article  CAS  Google Scholar 

  9. Stevenson M, et al. Surgical mouse models of vertical sleeve gastrectomy and Roux-en Y gastric bypass: a review. Obes Surg. 2019;29(12):4084–94.

    Article  PubMed  Google Scholar 

  10. Tordoff MG, Ellis HT. Obesity in C57BL/6J mice fed diets differing in carbohydrate and fat but not energy content. Physiol Behav. 2022;243:113644.

    Article  CAS  PubMed  Google Scholar 

  11. Cottam MA, et al. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat Commun. 2022;13(1):2950.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christ A, et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. 2018;172(1–2):162-175 e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinstock A, Brown EJ, Garabedian ML, Pena S, Sharma M, Lafaille J, et al. Correction Weinstock A, et al. Single-Cell RNA Sequencing of Visceral Adipose Tissue Leukocytes Reveals that Caloric: Restriction Following Obesity Promotes the Accumulation of a Distinct Macrophage Population with Features of Phagocytic Cells. Immunometabolism. 2019;1:e190008. https://doi.org/10.20900/immunometab20190016.

  14. Stevenson M, et al. RYGB is more effective than VSG at protecting mice from prolonged high-fat diet exposure: an occasion to roll up our sleeves? Obes Surg. 2021;31(7):3227–41.

    Article  PubMed  Google Scholar 

  15. Hao Z, et al. Development and verification of a mouse model for Roux-en-Y gastric bypass surgery with a small gastric pouch. PLoS ONE. 2013;8(1):e52922.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kraus D, Yang Q, Kahn BB. Lipid extraction from mouse feces. Bio Protoc. 2015;5(1):e1375. https://doi.org/10.21769/bioprotoc.1375.

  17. Gargiulo S, et al. Evaluation of growth patterns and body composition in C57Bl/6J mice using dual energy X-ray absorptiometry. Biomed Res Int. 2014;2014:253067.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  19. Pearson OM, Lieberman DE. The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;Suppl 39:63–99.

  20. Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mechanick JI, et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures - 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surg Obes Relat Dis. 2020;16(2):175–247.

    Article  PubMed  Google Scholar 

  22. O’Kane M, et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update. Obes Rev. 2020;21(11):e13087.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev. 2010;238(1):37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van den Berg SM, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016;30(5):1779–88.

    Article  PubMed  Google Scholar 

  25. Bowers E, Singer K. Obesity-induced inflammation: The impact of the hematopoietic stem cell niche. JCI Insight. 2021;6(3):e145295. https://doi.org/10.1172/jci.insight.145295

  26. Xu Y, Murphy AJ, Fleetwood AJ. Hematopoietic progenitors and the bone marrow niche shape the inflammatory response and contribute to chronic disease. Int J Mol Sci. 2022;23(4).

  27. Sandvik J, et al. Iron deficiency and anemia 10 years after Roux-en-Y gastric bypass for severe obesity. Front Endocrinol. 2021;12:679066 (Lausanne).

    Article  Google Scholar 

  28. Muller TD, Klingenspor M, Tschop MH. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat Metab. 2021;3(9):1134–6.

    Article  PubMed  Google Scholar 

  29. Virtue S, Lelliott CJ, Vidal-Puig A. What is the most appropriate covariate in ANCOVA when analysing metabolic rate? Nat Metab. 2021;3(12):1585.

    Article  PubMed  Google Scholar 

  30. Archer J. Rodent sex differences in emotional and related behavior. Behav Biol. 1975;14(4):451–79.

    Article  CAS  PubMed  Google Scholar 

  31. Kaiyala KJ, Schwartz MW. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes. 2011;60(1):17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tschop MH, et al. A guide to analysis of mouse energy metabolism. Nat Methods. 2011;9(1):57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Speakman JR. Measuring energy metabolism in the mouse - theoretical, practical, and analytical considerations. Front Physiol. 2013;4:34.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fernandez-Verdejo R, et al. Progress and challenges in analyzing rodent energy expenditure. Nat Methods. 2019;16(9):797–9.

    Article  CAS  PubMed  Google Scholar 

  35. Buzby GP, et al. Prognostic nutritional index in gastrointestinal surgery. Am J Surg. 1980;139(1):160–7.

    Article  CAS  PubMed  Google Scholar 

  36. Keller U. Nutritional laboratory markers in malnutrition. J Clin Med. 2019;8(6):775. https://doi.org/10.3390/jcm8060775.

  37. Hernandez-Martinez A, et al. Changes in volumetric bone mineral density and bone quality after Roux-en-Y gastric bypass: a meta-analysis with meta-regression. Obes Rev. 2022;23(8):e13479.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paccou J, et al. Bariatric surgery and osteoporosis. Calcif Tissue Int. 2022;110(5):576–91.

    Article  CAS  PubMed  Google Scholar 

  39. Corbeels K, et al. The curious fate of bone following bariatric surgery: bone effects of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) in mice. Int J Obes. 2020;44(10):2165–76 (Lond).

    Article  CAS  Google Scholar 

  40. Yu EW, et al. Cortical and trabecular deterioration in mouse models of Roux-en-Y gastric bypass. Bone. 2016;85:23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zahedi B, et al. The PYY/Y2R-deficient male mouse is not protected from bone loss due to Roux-en-Y gastric bypass. Bone. 2023;167:116608.

    Article  CAS  PubMed  Google Scholar 

  42. Mangan A, et al. Iron and vitamin D/calcium deficiency after gastric bypass: mechanisms involved and strategies to improve oral supplement disposition. Curr Drug Metab. 2019;20(3):244–52.

    Article  CAS  PubMed  Google Scholar 

  43. Laird E, et al. Vitamin D and bone health: potential mechanisms. Nutrients. 2010;2(7):693–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Longo AB, Ward WE. PUFAs, Bone mineral density, and fragility fracture: findings from human studies. Adv Nutr. 2016;7(2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Devlin MJ, et al. Differential effects of high fat diet and diet-induced obesity on skeletal acquisition in female C57BL/6J vs. FVB/NJ mice. Bone Rep. 2018;8:204–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drincic AT, et al. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity. 2012;20(7):1444–8 (Silver Spring).

    Article  CAS  PubMed  Google Scholar 

  47. Park CY, et al. Effects of high fat diet-induced obesity on vitamin D metabolism and tissue distribution in vitamin D deficient or supplemented mice. Nutr Metab. 2020;17:44 (Lond).

    Article  CAS  Google Scholar 

  48. Benova A, Tencerova M. Obesity-induced changes in bone marrow homeostasis. Front Endocrinol. 2020;11:294 (Lausanne).

    Article  Google Scholar 

  49. Ambrosi TH, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771-784 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23(7):1128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singer K, et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab. 2014;3(6):664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagareddy PR, et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 2014;19(5):821–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Griffin C, et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c(+) adipose tissue macrophage production in obese mice. J Biol Chem. 2018;293(23):8775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cortez M, et al. A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-kappaB and attenuating PPAR-gamma expression in bone marrow mesenchymal stem cells. Inflammation. 2013;36(2):379–86.

    Article  CAS  PubMed  Google Scholar 

  55. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633–43.

    Article  CAS  PubMed  Google Scholar 

  56. van der Heijden RA, et al. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging. 2015;7(4):256–68 (Albany NY).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sayadi Shahraki M, et al. Bone health after bariatric surgery: consequences, prevention, and treatment. Adv Biomed Res. 2022;11:92.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diabetes Endocrinol. 2014;2(2):165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yao Y, et al. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases. Front Immunol. 2021;12:664871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Samuel S, Sitrin MD. Vitamin D’s role in cell proliferation and differentiation. Nutr Rev. 2008;66(10 Suppl 2):S116–24.

    Article  PubMed  Google Scholar 

  61. Gesquiere I, et al. Iron deficiency after Roux-en-Y gastric bypass: insufficient iron absorption from oral iron supplements. Obes Surg. 2014;24(1):56–61.

    Article  PubMed  Google Scholar 

  62. Srivastava A, et al. Reversal of NAFLD after VSG is independent of weight-loss but RYGB offers more efficacy when maintained on a high-fat diet. Obes Surg. 2022;32(6):2010–22.

    Article  MathSciNet  PubMed  Google Scholar 

  63. Barrientos T, et al. Metabolic catastrophe in mice lacking transferrin receptor in muscle. EBioMedicine. 2015;2(11):1705–17.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ikeda Y, Funamoto M, Tsuchiya K. The role of iron in obesity and diabetes. J Med Invest. 2022;69(1.2):1–7.

    Article  PubMed  Google Scholar 

  65. Hilton C, et al. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes. 2023;47(7):554–63 (Lond).

    Article  CAS  Google Scholar 

  66. Nazari M, et al. Iron chelation increases beige fat differentiation and metabolic activity, preventing and treating obesity. Sci Rep. 2022;12(1):776.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hankir MK, Seyfried F. Do bariatric surgeries enhance brown/beige adipose tissue thermogenesis? Front Endocrinol. 2020;11:275 (Lausanne).

    Article  Google Scholar 

  68. orrigan JK, Ramachandran D, He Y, Palmer CJ, Jurczak MJ, Chen R, et al. Mouse Metabolic Phenotyping Center Energy Balance Working Group; Banks AS. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. Elife. 2020;9:e53560. https://doi.org/10.7554/eLife.53560.

  69. Kumar R, et al. Fat malabsorption and increased intestinal oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery. 2011;149(5):654–61.

    Article  PubMed  Google Scholar 

  70. Mahawar KK, Sharples AJ. Contribution of malabsorption to weight loss after Roux-en-Y gastric bypass: a systematic review. Obes Surg. 2017;27(8):2194–206.

    Article  PubMed  Google Scholar 

  71. Cho YM. A gut feeling to cure diabetes: potential mechanisms of diabetes remission after bariatric surgery. Diabetes Metab J. 2014;38(6):406–15.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vega GL, Grundy SM. Metabolic risk susceptibility in men is partially related to adiponectin/leptin ratio. J Obes. 2013;2013:409679.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fruhbeck G, et al. Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  74. Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients. 2019;11(2):454. https://doi.org/10.3390/nu11020454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Becerril S, Rodríguez A, Catalán V, Ramírez B, Mentxaka A, Neira G, et al. Sex- and age-dependent changes in the adiponectin/leptin ratio in experimental diet-induced obesity in mice. Nutrients. 2022;15(1):73. https://doi.org/10.3390/nu15010073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carswell KA, et al. A systematic review and meta-analysis of the effect of gastric bypass surgery on plasma lipid levels. Obes Surg. 2016;26(4):843–55.

    Article  PubMed  Google Scholar 

  77. Kaufman S, et al. Roux-en-Y gastric bypass surgery reprograms enterocyte triglyceride metabolism and postprandial secretion in rats. Mol Metab. 2019;23:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lutz TA, Bueter M. Physiological mechanisms behind Roux-en-Y gastric bypass surgery. Dig Surg. 2014;31(1):13–24.

    Article  PubMed  Google Scholar 

  79. Fakhry TK, et al. Bariatric surgery improves nonalcoholic fatty liver disease: a contemporary systematic review and meta-analysis. Surg Obes Relat Dis. 2019;15(3):502–11.

    Article  PubMed  Google Scholar 

  80. Shalhub S, et al. The importance of routine liver biopsy in diagnosing nonalcoholic steatohepatitis in bariatric patients. Obes Surg. 2004;14(1):54–9.

    Article  PubMed  Google Scholar 

  81. Lefere S, et al. Bariatric surgery and the liver-mechanisms, benefits, and risks. Obes Rev. 2021;22(9):e13294.

    Article  PubMed  Google Scholar 

  82. Lee Y, et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2019;17(6):1040-1060 e11.

    Article  PubMed  Google Scholar 

  83. Sandvik ECS, Aasarød KM, Johnsen G, Hoff DAL, Kulseng B, Hyldmo ÅA, et al. The effect of roux-en-y gastric bypass on non-alcoholic fatty liver disease fibrosis assessed by FIB-4 and NFS Scores—An 11.6-year follow-up study. J Clin Med. 2022;11:4910.

  84. Głuszyńska P, Lemancewicz D, Dzięcioł JB, Razak Hady H. Non-alcoholic fatty liver disease (NAFLD) and bariatric/metabolic surgery as its treatment option: A review. J Clin Med. 2021;10(24):5721. https://doi.org/10.3390/jcm10245721.

Download references

Acknowledgements

We would like to thank the Comparative Medicine Division for their help and kind support throughout the duration of the study.

Funding

EAF and MN were supported by NIH grants HL131481 and HL084312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ragolia.

Ethics declarations

Ethical Approval

All experiments and animal care protocols were approved by NYU Grossman Long Island School of Medicine’s Institutional Animal Use and Care Committee, which adheres to guidelines provided by the National Institutes of Health.

Informed Consent

Informed consent does not apply.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• After RYGB, body weight, fat mass, and lean mass are similar regardless of diet.

• RYGB and HFD are independently detrimental to BMD and vitamin D levels.

• HFD promotes HSPC differentiation and myeloid skewing independent of RYGB surgery.

• HFD after RYGB impairs improvements to hyperglycemia, dyslipidemia, and NAFLD.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

(DOCX 4.83 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, M., Srivastava, A., Nacher, M. et al. The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice. OBES SURG 34, 911–927 (2024). https://doi.org/10.1007/s11695-023-07052-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-023-07052-w

Keywords

Navigation