Skip to main content
Log in

A High-Fat Diet Increases IL-1, IL-6, and TNF-α Production by Increasing NF-κB and Attenuating PPAR-γ Expression in Bone Marrow Mesenchymal Stem Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

It is well established that a high-fat diet (HFD) can lead to overweight and ultimately to obesity, as well as promoting low-grade chronic inflammation associated with increased levels of such mediators as TNF-α, IL-1, and IL-6. Bone marrow mesenchymal stem cells (MSCs), which are involved in hematopoietic niches and microenvironments, can be affected by these cytokines, resulting in induction of NF-κB and inhibition of PPAR-γ. Because this phenomenon could ultimately lead to suppression of bone marrow adipogenesis, we set out to investigate the effect of an HFD on the expression of PPAR-γ and NF-κB, as well as the production of IL-1, IL-6, and TNF-α in MSCs. Two-month-old male Wistar rats were fed a HFD diet and evaluated by means of leukograms and myelograms along with blood total cholesterol, triglyceride, and C-reactive protein levels. MSCs were isolated, and PPAR-γ and NF-κB were quantified, as well as IL-1, IL-6, and TNF-α production. Animals that were fed a HFD showed higher levels of blood total cholesterol, triglycerides, and C-reactive protein with leukocytosis and bone marrow hyperplasia. MSCs from HFD animals showed increased production of IL-1, IL-6, and TNF-α and increased NF-κB and reduced PPAR-γ expression. Therefore, ingestion of an HFD induces alterations in MSCs that may influence modulation of hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gainsford, T., T.A. Willson, D. Metcalf, E. Handman, C. McFarlane, A. Ng, N.A. Nicola, W.S. Alexander, and D.J. Hilton. 1996. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proceedings of the National Academy of Sciences USA 93: 14564–14568.

    Article  CAS  Google Scholar 

  2. Choi, K.D., M. Vodyanik, and I.I. Slukvin. 2011. Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nature Protocols 6: 296–313.

    Article  PubMed  CAS  Google Scholar 

  3. Fantuzzi, G., and R. Faggioni. 2000. Leptin in the regulation of immunity, inflammation, and hematopoiesis. Journal of Leukocyte Biology 68: 437–446.

    PubMed  CAS  Google Scholar 

  4. Schäffler, A., J. Schölmerich, and B. Salzberger. 2007. Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends in Immunology 28: 393–399.

    Article  PubMed  Google Scholar 

  5. Laharrague, P., J.M. Oppert, P. Brousset, J.P. Charlet, A. Campfield, A.M. Fontanilles, B. Guy-Grand, J.X. Corberand, L. Pénicaud, and L. Casteilla. 2000. High concentration of leptin stimulates myeloid differentiation from human bone marrow CD34+ progenitors: potential involvement in leukocytosis of obese subjects. International Journal of Obesity and Related Metabolic Disorders 24: 1212–1216.

    Article  PubMed  CAS  Google Scholar 

  6. Ogawa, M. 1993. Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853.

    PubMed  CAS  Google Scholar 

  7. Fuchs, E., T. Tumbar, and G. Guasch. 2004. Socializing with the neighbors: stem cells and their niche. Cell 116: 769–778.

    Article  PubMed  CAS  Google Scholar 

  8. Rosen, E.D., and O.A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology 7: 885–896.

    Article  PubMed  CAS  Google Scholar 

  9. Ichida, F., R. Nishimura, K. Hata, T. Matsubara, F. Ikeda, K. Hisada, H. Yatani, X. Cao, T. Komori, A. Yamaguchi, and T. Yoneda. 2004. Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. The Journal of Biological Chemistry 279: 34015–34022.

    Article  PubMed  CAS  Google Scholar 

  10. Jeon, M.J., J.A. Kim, S.H. Kwon, S.W. Kim, K.S. Park, S.W. Park, S.Y. Kim, and C.S. Shin. 2003. Activation of peroxisome proliferator-activated receptor-y inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. The Journal of Biological Chemistry 278: 23270–23277.

    Article  PubMed  CAS  Google Scholar 

  11. Arai, F., A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G.Y. Koh, and T. Suda. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161.

    Article  PubMed  CAS  Google Scholar 

  12. Calvi, L.M., G.B. Adams, K.W. Weibrecht, J.M. Weber, D.P. Olson, M.C. Knight, R.P. Martin, E. Schipani, P. Divieti, F.R. Bringhurst, L.A. Milner, H.M. Kronenberg, and D.T. Scadden. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–846.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, J., C. Niu, L. Ye, H. Huang, X. He, W.G. Tong, J. Ross, J. Haug, T. Johnson, J.Q. Feng, S. Harris, L.M. Wiedemann, Y. Mishina, and L. Li. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841.

    Article  PubMed  CAS  Google Scholar 

  14. Naveiras, O., V. Nardi, P.L. Wenzel, P.V. Hauschka, F. Fahey, and G.Q. Daley. 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460: 259–263.

    Article  PubMed  CAS  Google Scholar 

  15. Takada, I., A.P. Kouzmenko, and S. Kato. 2010. PPAR-gamma Signaling Crosstalk in Mesenchymal Stem Cells. PPAR Research. doi:10.1155/2010/341671.

  16. Suzawa, M., I. Takada, J. Yanagisawa, F. Ohtake, S. Ogawa, T. Yamauchi, T. Kadowaki, Y. Takeuchi, H. Shibuya, Y. Gotoh, K. Matsumoto, and S. Kato. 2003. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biology 5: 224–230.

    Article  PubMed  CAS  Google Scholar 

  17. Wan, Y. 2010. PPARγ in bone homeostasis. Trends in Endocrinology and Metabolism 21: 722–728.

    Article  PubMed  CAS  Google Scholar 

  18. Takada, I., M. Suzawa, and S. Kato. 2005. Nuclear receptors as targets for drug development: crosstalk between peroxisome proliferator-activated receptor gamma and cytokines in bone marrow-derived mesenchymal stem cells. Journal of Pharmacological Sciences 97: 184–189.

    Article  PubMed  CAS  Google Scholar 

  19. Kelly, D., J.I. Campbell, T.P. King, G. Grant, E.A. Jansson, A.G. Coutts, S. Pettersson, and S. Conway. 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nature Immunology 5: 104–112.

    Article  PubMed  CAS  Google Scholar 

  20. Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123: 1939–1951.

    PubMed  CAS  Google Scholar 

  21. Pang, J., Y. Choi, and T. Park. 2008. Ilex paraguariensis extract ameliorates obesity induced by high-fat diet: potential role of AMPK in the visceral adipose tissue. Archives of Biochemistry and Biophysics 476: 178–185.

    Article  PubMed  CAS  Google Scholar 

  22. Dacie, J.V., and S.M. Lewis. 1995. Practical haematology, 57–58. Edinburgh: Churchill Livingstone.

    Google Scholar 

  23. Buettner, R., J. Scholmerich, and L.C. Bollheimer. 2007. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 15: 798–808.

    Article  PubMed  CAS  Google Scholar 

  24. Buettner, R., K.G. Parhofer, M. Woenckhaus, C.E. Wrede, L.A. Kunz-Schughart, J. Schölmerich, and L.C. Bollheimer. 2006. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology 36: 485–501.

    Article  PubMed  CAS  Google Scholar 

  25. Hariri, N., and L. Thibault. 2010. High-fat diet-induced obesity in animal models. Nutrition Research Reviews 23: 270–299.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen-Lahav, M., S. Shany, D. Tobvin, C. Chaimovitz, and A. Douvdevani. 2006. Vitamin D decreases NF kappa B activity by increasing I kappa B alpha levels. Nephrology, Dialysis, Transplantation 21: 889–897.

    Article  PubMed  CAS  Google Scholar 

  27. Wintergerst, E.S., S. Maggini, and D.H. Hornig. 2007. Contribution of selected vitamins and trace elements to immune function. Annals of Nutrition and Metabolism 51: 301–323.

    Article  PubMed  CAS  Google Scholar 

  28. Ghibaudi, L., J. Cook, C. Farley, M. van Heek, and J.J. Hwa. 2002. Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague-Dawley rats. Obesity Research 10: 956–963.

    Article  PubMed  CAS  Google Scholar 

  29. Pratley, R.E., C. Wilson, and C. Bogardus. 1995. Relation of the white blood cell count to obesity and insulin resistance: effect of race and gender. Obesity Research 3: 563–571.

    Article  PubMed  CAS  Google Scholar 

  30. Dixon, J.B., and P.E. O’Brien. 2006. Obesity and the white blood cell count: Changes with sustained weight loss. Obesity Surgery 16: 251–257.

    Article  PubMed  Google Scholar 

  31. Hotamisligil, G.S., P. Arner, J.F. Caro, R.L. Atkinson, and B.M. Spiegelman. 1995. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. The Journal of Clinical Investigation 95: 2409–2415.

    Article  PubMed  CAS  Google Scholar 

  32. Saghizadeh, M., J.M. Ong, W.T. Garvey, R.R. Henry, and P.A. Kern. 1996. The expression of TNF alpha by human muscle. Relationship to insulin resistance. The Journal of Clinical Investigation 97: 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  33. Crisostomo, P.R., Y. Wang, T.A. Markel, M. Wang, T. Lahm, and D.R. Meldrum. 2008. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. American Journal of Physiology. Cell Physiology 294: C675–C682.

    Article  PubMed  CAS  Google Scholar 

  34. Hideshima, T., C. Mitsiades, G. Tonon, P.G. Richardson, and K.C. Anderson. 2007. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Reviews. Cancer 7: 585–598.

    Article  PubMed  CAS  Google Scholar 

  35. Ricote, M., and C.K. Glass. 2007. PPARs and molecular mechanisms of transrepression. Biochimica et Biophysica Acta 1771: 926–935.

    Article  PubMed  CAS  Google Scholar 

  36. Kota, B.P., T.H. Huang, and B.D. Roufogalis. 2005. An overview on biological mechanisms of PPARs. Pharmacological Research 51: 85–94.

    Article  PubMed  CAS  Google Scholar 

  37. Takada, I., M. Suzawa, K. Matsumoto, and S. Kato. 2007. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Annals of the New York Academy of Sciences 1116: 182–195.

    Article  PubMed  CAS  Google Scholar 

  38. Gordeladze, J.O., C.A. Drevon, U. Syversen, and J.E. Reseland. 2002. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. Journal of Cellular Biochemistry 85: 825–836.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas, T., F. Gori, S. Khosla, M.D. Jensen, B. Burguera, and B.L. Riggs. 1999. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140: 1630–1638.

    Article  PubMed  CAS  Google Scholar 

  40. Yin, T., and L. Li. 2006. The stem cell niches in bone. The Journal of Clinical Investigation 116: 1195–1201.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by grants from the Fundação de Amparo a Pesquisa do Estado de São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ambrósio Fock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortez, M., Carmo, L.S., Rogero, M.M. et al. A High-Fat Diet Increases IL-1, IL-6, and TNF-α Production by Increasing NF-κB and Attenuating PPAR-γ Expression in Bone Marrow Mesenchymal Stem Cells. Inflammation 36, 379–386 (2013). https://doi.org/10.1007/s10753-012-9557-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9557-z

KEY WORDS

Navigation