Skip to main content
Log in

Changes of Short-Chain Fatty Acids and Their Receptors in an Obese Rat Model After Sleeve Gastrectomy

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract 

Background

Short-chain fatty acids (SCFAs) and gut microbiota have health-related effects and are associated with a wide range of disorders. However, the changes of SCFAs and their receptors after sleeve gastrectomy (SG) remain unclear. This study aimed to examine changes of SCFAs and their receptors after SG in an obese rat model.

Methods

Thirty obese Sprague–Dawley rats eating a high-energy diet for 6 weeks were divided into three groups: sham-operated (SO) control, pair-fed (PF) control, and SG group. Six weeks after the surgery, metabolic parameters, SCFA levels in the blood and stool, mRNA and protein expression of SCFA receptors in the ileum and epididymal fat, and gut microbiota were examined.

Results

Metabolic parameters in the SG group were significantly improved compared with the SO group. Acetic acid levels in the blood and stool were significantly higher in the SG group than the PF group. The butyric acid level in the stool was also significantly higher in the SG group than in the PF group. In the ileum and epididymal fat, mRNA and protein expression of GPR41 was significantly higher in the SG group than in the other two groups, and mRNA and protein expression of GPR43 was significantly higher in the SG group than in the PF group. Increases in the genera Enterococcus, Lactobacillus, Lactococcus, and Clostridium were observed in the stool after SG.

Conclusions

SG may activate SCFA pathways through a change in gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References 

  1. Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105:16767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22:849–55.

    Article  CAS  PubMed  Google Scholar 

  3. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7:2839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10:946–56.

    Article  CAS  PubMed  Google Scholar 

  7. Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.

    Article  CAS  PubMed  Google Scholar 

  8. Tazoe H, Otomo Y, Karaki S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res. 2009;30:149–56.

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima A, Kaga N, Nakanishi Y, et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J Immunol. 2017;199:3516–24.

    Article  CAS  PubMed  Google Scholar 

  10. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    Article  CAS  PubMed  Google Scholar 

  11. Sowah SA, Riedl L, Damms-Machado A, et al. Effects of weight-loss interventions on short-chain fatty acid concentrations in blood and feces of adults: a systematic review. Adv Nutr. 2019;10:673–84.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Angrisani L, Santonicola A, Iovino P, Ramos A, Shikora S, Kow L. Bariatric Surgery Survey 2018: similarities and disparities among the 5 IFSO chapters. Obes Surg. 2021;31:1937–48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ohta M, Kasama K, Sasaki A, et al. Current status of laparoscopic bariatric/metabolic surgery in Japan: the sixth nationwide survey by the Japan Consortium of Obesity and Metabolic Surgery. Asian J Endosc Surg. 2021;14:170–7.

    Article  PubMed  Google Scholar 

  14. Lutz TA, Bueter M. The use of rat and mouse models in bariatric surgery experiments. Front Nutr. 2016;3:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Takayama H, Ohta M, Tada K, et al. Additional effects of duodenojejunal bypass on glucose metabolism in a rat model of sleeve gastrectomy. Surg Today. 2019;49:637–44.

    Article  CAS  PubMed  Google Scholar 

  16. Lopez PP, Nicholson SE, Burkhardt GE, Johnson RA, Johnson FK. Development of a sleeve gastrectomy weight loss model in obese Zucker rats. J Surg Res. 2009;157:243–50.

    Article  PubMed  Google Scholar 

  17. Masuda T, Ohta M, Hirashita T, et al. A comparative study of gastric banding and sleeve gastrectomy in an obese diabetic rat model. Obes Surg. 2011;21:1774–80.

    Article  PubMed  Google Scholar 

  18. Jones DC, Kimeldorf DJ. Lifespan measurements in the male rat. J Gerontol. 1963;18:316–21.

    Article  CAS  PubMed  Google Scholar 

  19. Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141:950–8.

    Article  CAS  PubMed  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  21. Tsukahara T, Matsukawa N, Tomonaga S, Inoue R, Ushida K, Ochiai K. High-sensitivity detection of short-chain fatty acids in porcine ileal, cecal, portal and abdominal blood by gas chromatography-mass spectrometry. Anim Sci J. 2014;85:494–8.

    Article  CAS  PubMed  Google Scholar 

  22. Tominaga M, Ohta M, Kai S, Iwaki K, Shibata K, Kitano S. Increased heat-shock protein 90 expression contributes to impaired adaptive cytoprotection in the gastric mucosa of portal hypertensive rats. J Gastroenterol Hepatol. 2009;24:1136–41.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE. 2014;9: e105592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hisada T, Endoh K, Kuriki K. Inter- and intra-individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Arch Microbiol. 2015;197:919–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kasai C, Sugimoto K, Moritani I, et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93:1062–72.

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Yi CX, Katiraei S, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67:1269–79.

    Article  CAS  PubMed  Google Scholar 

  31. Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108:8030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong YH, Nishimura Y, Hishikawa D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology. 2005;146:5092–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tang C, Ahmed K, Gille A, et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med. 2015;21:173–7.

    Article  CAS  PubMed  Google Scholar 

  34. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190–5.

    Article  Google Scholar 

  35. Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peiris M, Aktar R, Raynel S, et al. Effects of obesity and gastric bypass surgery on nutrient sensors, endocrine cells, and mucosal innervation of the mouse colon. Nutrients. 2018;10:1529.

  37. Yu X, Wu Z, Song Z, et al. Single-anastomosis duodenal jejunal bypass improve glucose metabolism by regulating gut microbiota and short-chain fatty acids in Goto-Kakisaki rats. Front Microbiol. 2020;11:273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124:1111–34.

    Article  PubMed  Google Scholar 

  39. Smit G, Smit BA, Engels WJ. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev. 2005;29:591–610.

    Article  CAS  PubMed  Google Scholar 

  40. Celiberto LS, Bedani R, Dejani NN, et al. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLoS ONE. 2017;12: e0175935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cassir N, Benamar S, La Scola B. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin Microbiol Infect. 2016;22:37–45.

    Article  PubMed  Google Scholar 

  42. Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015: 806248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27:917–25.

    Article  PubMed  Google Scholar 

  44. Guo Y, Huang ZP, Liu CQ, Qi L, Sheng Y, Zou DJ. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2018;178:43–56.

    Article  CAS  PubMed  Google Scholar 

  45. Shah S, Shah P, Todkar J, Gagner M, Sonar S, Solav S. Prospective controlled study of effect of laparoscopic sleeve gastrectomy on small bowel transit time and gastric emptying half-time in morbidly obese patients with type 2 diabetes mellitus. Surg Obes Relat Dis. 2010;6:152–7.

    Article  PubMed  Google Scholar 

  46. Muredda L, Kępczyńska MA, Zaibi MS, Alomar SY, Trayhurn P. IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids. Arch Physiol Biochem. 2018;124:97–108.

    Article  CAS  PubMed  Google Scholar 

  47. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev. 2020;100:171–210.

    Article  CAS  PubMed  Google Scholar 

  48. Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed  CAS  Google Scholar 

  49. Buchwald H. Metabolic surgery: a brief history and perspective. Surg Obes Relat Dis. 2010;6:221–2.

    Article  PubMed  Google Scholar 

  50. Sista F, Abruzzese V, Clementi M, Carandina S, Cecilia M, Amicucci G. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg Obes Relat Dis. 2017;13:7–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Taisei Ryuo, Ms. Akari Himeda, and Ms. Nozomi Ito for their technical assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuro Fujinaga.

Ethics declarations

Ethical Approval

This study was approved by the Animal Committee of Oita University (#192002B).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Acetic acid levels in blood and stool were significantly higher in the SG vs. PF.

• Butyric acid level in the stool was significantly higher in the SG vs. PF.

• GPR41 and GPR43 in the ileum and epididymal fat were significantly higher in the SG vs. PF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujinaga, A., Ohta, M., Endo, Y. et al. Changes of Short-Chain Fatty Acids and Their Receptors in an Obese Rat Model After Sleeve Gastrectomy. OBES SURG 32, 2649–2657 (2022). https://doi.org/10.1007/s11695-022-06130-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-022-06130-9

Keywords

Navigation