Skip to main content

Advertisement

Log in

Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Elevated lipoprotein(a) (Lp(a)) level is an independent risk factor for cardiovascular diseases. Lifestyle intervention studies targeting weight loss revealed little to no significant changes in Lp(a) levels. The impact of interventions that induce substantial weight loss, such as bariatric surgery, on Lp(a) levels is currently unclear.

Objective

To determine the acute and long-term impact of bariatric surgery on Lp(a) levels in patients with severe obesity.

Methods

Sixty-nine patients with severe obesity underwent biliopancreatic diversion with duodenal switch (BPD-DS) surgery. The lipid profile was evaluated and Lp(a) levels were measured before surgery and at 6 and 12 months after BPD-DS surgery.

Results

Median Lp(a) levels at baseline were 11.1 (4.1–41.6) nmol/L. Six months and 12 months after the BDP-DS surgery, we observed an improvement of lipid profile. At 6 months, we observed a 13% decrease in Lp(a) levels (9.7 (2.9–25.6) nmol/L, p < 0.0001) but this decrease was not sustained at 12 months (11.1 (3.9–32.8) nmol/L, p = 0.8). When the patients were separated into tertiles according to Lp(a) levels at baseline, we observed that the Lp(a) reduction at 12 months after BPD-DS surgery remained significant but modest in patients of the top Lp(a) tertile.

Conclusion

Our results suggest that BPD-DS surgery modestly reduces Lp(a) levels in the short term (6 months) in patients with severe obesity but this improvement is sustained over time only in patients with higher Lp(a) levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.

    Article  PubMed  CAS  Google Scholar 

  2. Emdin CA, Khera AV, Natarajan P, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68(25):2761–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Boerwinkle E, Leffert CC, Lin J, et al. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31(23):2844–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sonnichsen AC, Richter WO, Schwandt P. Reduction of lipoprotein (a) by weight loss. Int J Obes. 1990;14(6):487–94.

    PubMed  CAS  Google Scholar 

  6. Kiortsis DN, Tzotzas T, Giral P, et al. Changes in lipoprotein(a) levels and hormonal correlations during a weight reduction program. Nutr Metab Cardiovasc Dis. 2001;11(3):153–7.

    PubMed  CAS  Google Scholar 

  7. Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.

    Article  PubMed  Google Scholar 

  9. Boyer M, Lévesque V, Poirier P, et al. Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. J Clin Lipidol. 2016;10(6):1353–61.

    Article  PubMed  Google Scholar 

  10. Boman L, Ericson M. Lipoprotein a levels after intestinal bypass operation for morbid obesity. Obes Surg. 1997;7(2):125–7.

    Article  PubMed  CAS  Google Scholar 

  11. Williams DB, Hagedorn JC, Lawson EH, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13.

    Article  PubMed  Google Scholar 

  12. Lin BX, Weiss MC, Parikh M, et al. Changes in lipoprotein(a) following bariatric surgery. Am Heart J. 2018;197:175–6.

    Article  PubMed  Google Scholar 

  13. Piché M-È, Martin J, Cianflone K, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.

    Article  PubMed  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    Article  PubMed  CAS  Google Scholar 

  15. To VT, Huttl TP, Lang R, et al. Changes in body weight, glucose homeostasis, lipid profiles, and metabolic syndrome after restrictive bariatric surgery. Exp Clin Endocrinol Diabetes. 2012;120(9):547–52.

    Article  PubMed  CAS  Google Scholar 

  16. Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.

    Article  PubMed  Google Scholar 

  17. Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273(1):6–30.

    Article  PubMed  CAS  Google Scholar 

  18. Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119(3):624–9.

    Article  PubMed  CAS  Google Scholar 

  19. Langsted A, Varbo A, Kamstrup PR, et al. Elevated lipoprotein(a) does not cause low-grade inflammation despite causal association with aortic valve stenosis and myocardial infarction: a study of 100,578 individuals from the general population. J Clin Endocrinol Metab. 2015;100(7):2690–9.

    Article  PubMed  CAS  Google Scholar 

  20. Missala I, Kassner U, Steinhagen-Thiessen E. A systematic literature review of the association of lipoprotein(a) and autoimmune diseases and atherosclerosis. Int J Rheumatol. 2012;2012:480784.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Langsted A, Kamstrup PR, Nordestgaard BG. Lipoprotein(a): fasting and nonfasting levels, inflammation, and cardiovascular risk. Atherosclerosis. 2014;234(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  22. Muller N, Schulte DM, Turk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56(5):1034–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.

    Article  PubMed  Google Scholar 

  24. Schultz O, Oberhauser F, Saech J, et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5(12):e14328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Shin MJ, Blanche PJ, Rawlings RS, et al. Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am J Clin Nutr. 2007;85(6):1527–32.

    Article  PubMed  CAS  Google Scholar 

  26. Silaste ML, Rantala M, Alfthan G, et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24(3):498–503.

    Article  PubMed  CAS  Google Scholar 

  27. Faghihnia N, Tsimikas S, Miller ER, et al. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res. 2010;51(11):3324–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ginsberg HN, Kris-Etherton P, Dennis B, et al. Effects of reducing dietary saturated fatty acids on plasma lipids and lipoproteins in healthy subjects: the DELTA Study, protocol 1. Arterioscler Thromb Vasc Biol. 1998;18(3):441–9.

    Article  PubMed  CAS  Google Scholar 

  29. Haring B, von Ballmoos MC, Appel LJ, et al. Healthy dietary interventions and lipoprotein (a) plasma levels: results from the Omni Heart Trial. PLoS One. 2014;9(12):e114859.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jahansouz C, Xu H, Hertzel AV, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264(6):1022–8.

    Article  PubMed  Google Scholar 

  31. Chennamsetty I, Claudel T, Kostner KM, et al. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011;121(9):3724–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Calmarza P, Bajador E, Lapresta C, et al. Effect of biliary obstruction on lipoprotein(a) concentration. Clin Investig Arterioscler. 2014;26(5):218–23.

    PubMed  Google Scholar 

  33. Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation. 2017;135(4):352–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Arsenault BJ, Petrides F, Tabet F, et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol. 2018;12(1):130–6.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by operating grants from the Canadian Institutes of Health Research. We would like to thank Sylvain Pouliot for his technical help. M-E.P. is a recipient of a studentship from the Fonds de Recherche du Québec-Santé (FRQS). P.M. holds a FRQS research Chair on the Pathobiology of Calcific Aortic Valve Disease. B.J.A. holds a junior scholar award from the Fonds de Recherche du Québec: Santé (FRQ-S). P.P. is a senior scholar from the FRQ-S. A.C.C. is the recipient of the GlaxoSmithKline Chair in Diabetes of the Université de Sherbrooke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit J. Arsenault.

Ethics declarations

The ethics committee of the IUCPQ approved the experimental protocol and all patients gave their written informed consent before being included in the study.

Conflict of Interest

André Tchernof and Laurent Biertho report grants from Johnson & Johnson Medical and grants from Medtronic, during the conduct of the study. All other authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Després, AA., Piché, ME., Auclair, A. et al. Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity. OBES SURG 30, 3714–3720 (2020). https://doi.org/10.1007/s11695-020-04450-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-04450-2

Keywords

Navigation