Skip to main content
Log in

Changes in Glucose Metabolism in Vertical Sleeve Gastrectomy

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

We evaluated metabolic changes after vertical sleeve gastrectomy (VSG) surgery in a rat model using proteomics and metabolomic profiling in liver and serum.

Methods

Rats were randomly divided into two groups: sham (n = 10) and VSG (n = 12). Food intake, body weight, blood glucose, insulin, and thyroid hormone levels were measured. Two-dimensional electrophoresis, nuclear resonance spectroscopy, mass spectroscopy, immunofluorescence, and immunoblot analyses were used to determine and validate changes in metabolites and proteins in liver tissue and serum samples.

Results

Food intake and body weight decreased after VSG group (p < 0.05 and p < 0.05, respectively). Random blood glucose (sham, 183.3 ± 5.6 mg/dL; VSG, 138.5 ± 3.7 mg/dL) decreased while random insulin (sham, 0.45 ± 0.16 μg/L; VSG, 1.05 ± 0.18 μg/L) increased after VSG (p < 0.05 and p < 0.01, respectively). We found that expressions of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase-1 and glucose-6-phosphatase) and concentrations of pyruvate and malate decreased while lactate, NADH, NADPH, glucose, and AMP/ATP ratio increased after VSG. Thyroid hormones, triiodothyronine (T3) and free thyroxine (fT4), decreased after VSG.

Conclusion

This study proves that VSG suppresses hepatic glucose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  PubMed  Google Scholar 

  2. Bergman RN. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes. 1989;38:1512–27.

    Article  CAS  PubMed  Google Scholar 

  3. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87:507–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  CAS  PubMed  Google Scholar 

  5. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–56.

    Article  PubMed  Google Scholar 

  6. Dixon JB, O'Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.

    CAS  PubMed  Google Scholar 

  7. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.

    Article  CAS  PubMed  Google Scholar 

  8. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309:2240–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lakdawala MA, Bhasker A, Mulchandani D, et al. Comparison between the results of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass in the Indian population: a retrospective 1 year study. Obes Surg. 2010;20:1–6.

    Article  PubMed  Google Scholar 

  11. Peterli R, Wolnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009;250:234–41.

    Article  PubMed  Google Scholar 

  12. Abbatini F, Capoccia D, Casella G, et al. Long-term remission of type 2 diabetes in morbidly obese patients after sleeve gastrectomy. Surg Obes Relat Dis. 2013;9:498–502.

    Article  PubMed  Google Scholar 

  13. Stefater MA, Perez-Tilve D, Chambers AP, et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138:2426–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Moyer MW. New insight on bariatric surgery difficult to swallow. Nat Med. 2012;18:184–5.

    Article  CAS  PubMed  Google Scholar 

  15. Sjöström L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  16. Benedix F, Meyer F, Klose S, et al. Is there a role for surgery in the treatment of type 2 diabetes? Dtsch Med Wochenschr. 2014;139:207–12.

    Article  CAS  PubMed  Google Scholar 

  17. van Gaal WJ, Arnold JR, Testa L, et al. Myocardial injury following coronary artery surgery versus angioplasty (MICASA): a randomised trial using biochemical markers and cardiac magnetic resonance imaging. EuroIntervention. 2011;6:703–10.

    Article  PubMed  Google Scholar 

  18. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mutch DM, Fuhrmann JC, Rein D, et al. Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS One. 2009;4:e7905.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Seyfried F, Li JV, Miras AD, et al. Urinary phenotyping indicates weight loss-independent metabolic effects of Roux-en-Y gastric bypass in mice. J Proteome Res. 2013;12:1245–53.

    Article  CAS  PubMed  Google Scholar 

  21. Laferrère B, Reilly D, Arias S, et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 2011;3:80re2.

    PubMed Central  PubMed  Google Scholar 

  22. Porte Jr D. Beta-cells in type II diabetes mellitus. Diabetes. 1991;40:166–80.

    Article  PubMed  Google Scholar 

  23. Lamonte G, Tang X, Chen JL, et al. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 2013;1:23.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Avery LB, Bumpus NN. Valproic acid is a novel activator of AMP-activated protein kinase and decreases liver mass, hepatic fat accumulation, and serum glucose in obese mice. Mol Pharmacol. 2014;85:1–10.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Quan HY, Kim SJ, Kim do Y, et al. Licochalcone A regulates hepatic lipid metabolism through activation of AMP-activated protein kinase. Fitoterapia. 2013;86:208–16.

    Article  CAS  PubMed  Google Scholar 

  26. Yang J, Reshef L, Cassuto H, et al. Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem. 2009;284:27031–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Klieverik LP, Sauerwein HP, Ackermans MT, et al. Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab. 2008;294:E513–20.

    Article  CAS  PubMed  Google Scholar 

  28. Feng X, Jiang Y, Meltzer P, et al. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000;14:947–55.

    Article  CAS  PubMed  Google Scholar 

  29. Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141:950–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No.2014R1A5A2010008), the research fund of Hanyang University (HY-2012-MC), and the Keimyung University Medical School Research Promoting Grant launched from 2012.

Conflict of Interest

Yunmee Lho, Carel W le Roux, Hyeon Soo Park, Gon Sup Kim, Keeyoun Jung, Geum-Sook Hwang, Youn Kyoung Seo, Tae Kyung Ha, and Eunyoung Ha have no conflicts of interest or other financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Kyung Ha or Eunyoung Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lho, Y., le Roux, C.W., Park, H.S. et al. Changes in Glucose Metabolism in Vertical Sleeve Gastrectomy. OBES SURG 25, 2002–2010 (2015). https://doi.org/10.1007/s11695-015-1636-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-015-1636-4

Keywords

Navigation