Skip to main content
Log in

Nutritional, chemical, and morphological assessment of Couroupita guianensis: a potential edible fruit for human consumption

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Couroupita guianensis, a member of the Lecythidaceae family, is a plant widely known for its large, edible and unconventional fruits. The objective of the present study was to investigate the nutritional and chemical composition of the fruits of this species and to perform structural, ultrastructural, and histochemical tests to elucidate the sites of its pulp involved in the production of bioactive substances. The nutritional analysis revealed low fat and protein levels, but the pulp stood out as a significant source of dietary fiber, representing 6.72% of the content. Furthermore, the pulp showed 14.5 ∘Brix and approximately 18.97% total carbohydrates, with an energy value of 56 kcal.100 g−1. The fruit pulp exhibited an antioxidant potential of 183 ± 29 mg GAE.100 g−1 and 3517 ± 1055 µmol Fe2+.100 g−1, as determined by the Folin-Ciocalteu and FRAP methods, respectively. LC–MS analysis identified phenolic compounds, with emphasis on hydrolysable tannins. Furthermore, as determined by microscopy, the inner mesocarp was found to consist of vascularized parenchymal tissue accumulating lipid droplets. This region also contained sclereid clusters with secondary polylamellated walls and living protoplasts that accumulated phenolic compounds, probably ellagitannins, near the cell wall and the tonoplast. Additionally, ellagitannin-producing cells were identified, together with the dynamic transport of substances with bioactive potential. Considering these characteristics, along with the abundance of pulp per fruit and the ease of collection, the remarkable potential for consumption and commercialization of the fruit from the C. guianensis species stands out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

NCEP:

Non-conventional edible plant

GAE:

Gallic acid equivalent

TSS:

Total soluble solids

TFC:

Total flavonoid content

QE:

Quercetin equivalent

GAE:

Gallic acid equivalent

FRAP:

Ferric reducing antioxidant power

LC–QTOF–HRMS:

Liquid chromatography–hybrid quadrupole time-of-flight–high-resolution mass spectrometry

References

  1. C.M. Morton, S.A. Mori, G.T. Prance, K.G. Karol, M.W. Chase, Phylogenetic relationships of Lecythidaceae: a cladistic analysis using rbcL sequence and morphological data. Am. J. Bot. 84(4), 530–540 (1997). https://doi.org/10.2307/2446029

    Article  CAS  PubMed  Google Scholar 

  2. A.S. Mori, Biologia da polinização em Lecythidaceae. Acta Bot. Bras. 1, 121–124 (1987). https://doi.org/10.1590/S0102-33061987000300012

    Article  Google Scholar 

  3. S. Mori, C. Tsou, C. Wu, B. Cronholm, A. Anderberg, Evolution of Lecythidaceae with an emphasis on the circumscription of neotropical genera: information from combined F-NDH and L-TRN-F sequence data. Am. J. Bot. 94, 289–301 (2007). https://doi.org/10.3732/ajb.94.3.289

    Article  CAS  PubMed  Google Scholar 

  4. T.K. Lim, Couroupita guianensis, in Edible Medicinal and Non-medicinal Plants. ed. by T.K. Lim (Springer, Dordrecht, 2012), pp.133–137. https://doi.org/10.1007/978-94-007-2534-8_14

    Chapter  Google Scholar 

  5. O.M. Vargas, C.W. Dick, Diversification history of neotropical Lecythidaceae, an ecologically dominant tree family of amazon rain forest, in Neotropical Diversification: Patterns and Processes Fascinating Life Sciences. ed. by V. Rull, A. Carnaval (Springer, Geenva, 2020), pp.791–809

    Chapter  Google Scholar 

  6. A.V.C. Bobrov, M.S. Romanov, Morphogenesis of fruits and types of fruit of angiosperms. Bot. Lett. 166, 366–399 (2019). https://doi.org/10.1080/23818107.2019.1663448

    Article  Google Scholar 

  7. W. Stuppy, Glossary of Seed and Fruit Morphological Terms (Royal Botanic Gardens, Kew, 2004)

    Google Scholar 

  8. R.M. Silva, R.D.T.M. Ribeiro, D.J.G. Coutinho, S.I. da Silva, M.I. Gallão, Morphology of fruits, seeds and seedlings of Couroupita guianensis Aubl. (Lecythidaceae). Revista do Instituto Florestal 27(1), 7–17 (2015). https://doi.org/10.4322/rif.2015.001

    Article  Google Scholar 

  9. S.K. Gousia, K.A. Kumar, T.V. Kumar, J.N.L. Latha, Biological activities and medicinal properties of Couroupita guianensis. Int. J. Pharm. Pharm. Res. 3, 140–143 (2013)

    Google Scholar 

  10. M.A.B. Passos, Plantas alimentícias não convencionais (PANC) ocorrentes em Roraima. Rev. Ensino Interdiscip. 5(14), 388–404 (2019). https://doi.org/10.21920/recei72019514388404

    Article  Google Scholar 

  11. A.T.B.S. Fontelei, Use of monkey nuts (Couroupita guianensis) as an alternative ingredient in the formulation of feed for feeding Tambaqui (Colossoma macropomum) em cativeiro. Dissertation, Federal University of Amazonas (2016). https://tede.ufam.edu.br/handle/tede/5333

  12. F.J. Barba, C. Garcia, A. Fessard, P.E.S. Munekata, J.M. Lorenzo, A. Aboudia, F. Remize, Opuntia ficus indica edible parts: a food and nutritional security perspective. Food Rev. Int. 38(5), 930–952 (2022). https://doi.org/10.1080/87559129.2020.1756844

    Article  CAS  Google Scholar 

  13. AOAC, Official methods of analysis of the Association of Analytical Chemist International, 18th ed. (Gaithersburg, MD, USA, 2005).

  14. A.L. Merril, B.K. Watt, Energy Value of foods: basis and derivation. (United States Department of Agriculture, Washington, DC, USA, 1955)

  15. M.D.S.M. Rufino, R.E. Alves, E.S. De Brito, S.M. De Morais, C.D.G. Sampaio, J. Pérez-Jiménez, F.D. Saura-Calixto, Scientific methodology: determination of total antioxidant activity in fruits using the iron reduction method (FRAP) (2006). Comunicado Técnico Embrapa. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/664098/metodologia-cientifica-determinacao-da-atividade-antioxidante-total-em-frutas-pelo-metodo-de-reducao-do-ferro-frap. Accessed 12 June 2023

  16. T.J. Herald, P. Gadgil, M. Tilley, High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 92(11), 2326–2331 (2012). https://doi.org/10.1002/jsfa.5633

    Article  CAS  PubMed  Google Scholar 

  17. G. Bobo-García, G. Davidov-Pardo, C. Arroqui, P. Vírseda, M.R. Marín-Arroyo, M. Navarro, Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 95(1), 204–209 (2015). https://doi.org/10.1002/jsfa.6706

    Article  CAS  PubMed  Google Scholar 

  18. A.A. Bolanos de la Torre, T. Henderson, P.S. Nigam, R.K. Owusu-Apenten, A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem. 174(1), 119–123 (2015). https://doi.org/10.1016/j.foodchem.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  19. B.L. Gabriel, Biological Electron Microscopy (Van Nostrand Reinhold Company, New York, 1982)

    Google Scholar 

  20. T.P. O’brien, N. Feder, M.E. McCully, Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368–373 (1964)

    Article  Google Scholar 

  21. G. Gerlach, Botanische mikrotechnik, eine minführung (Georg Thieme, Stuttgart, 1969)

    Google Scholar 

  22. A. Pearse, Seeds of plenty, seeds of want social and economic implications of the green revolution. Revisiting Sustainable Development. United Research Institute for Social Development (UNRISD) (1980). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d43c8ea5911f3374a8050c31ee2300432bdd02b4#page=157.Accessed 04 November 2023

  23. D.A. Johansen, Plant Micro Technique (McGraw-Hill, New York, 1940)

    Google Scholar 

  24. M.L. Watson, Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4(4), 475–478 (1958). https://doi.org/10.1083/jcb.4.4.475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E.S. Reynolds, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17(1), 208–212 (1963). https://doi.org/10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. USDA, FoodData central search results. Bananas, overripe, raw (2020). https://fdc.nal.usda.gov/fdc-app.html#/food-details/1105073/nutrients. Accessed 05 December 2023.

  27. M.M.A.N. Ranjha, S. Irfan, M. Nadeem, S. Mahmood, A comprehensive review on nutritional value, medicinal uses, and processing of banana. Food Rev. Int. 38(2), 199–225 (2022). https://doi.org/10.1080/87559129.2020.1725890

    Article  CAS  Google Scholar 

  28. A.L. Pereira, V.K. Abreu, S. Rodrigues, Cupuassu—Theobroma grandiflorum. Exot. fruits. 2010, 159–162 (2018). https://doi.org/10.1016/B978-0-12-803138-4.00021-6

    Article  Google Scholar 

  29. USDA, FoodData Central search results. Guavas, common, raw (2019). https://fdc.nal.usda.gov/fdc-app.html#/food-details/173044/nutrients. Accessed 05 Nov 2023.

  30. P.B. Tayade, R.V. Adivarekar, Extraction of Indigo dye from Couroupita guianensis and its application on cotton fabric. Fash Text 1, 1–16 (2014). https://doi.org/10.1186/s40691-014-0016-3

    Article  Google Scholar 

  31. B.S.O. Colonia, G.V. de Melo Pereira, J.C. de Carvalho, S.G. Karp, C. Rodrigues, V.T. Soccol, L.S. Fanka, C.R. Soccol, Deodorization of algae biomass to overcome off-flavors and odor issues for developing new food products: innovations, trends, and applications. Food Chem. Adv. 2, 100270 (2023). https://doi.org/10.1016/j.focha.2023.100270

    Article  Google Scholar 

  32. A. Venkatraman, L.A. Sheba, Antioxidant potential and chromatographic profiling of Couroupita guianensis fruit pulp. J. Adv. Sci. Res. 13(1), 286–293 (2022). https://doi.org/10.55218/JASR.202213133

    Article  CAS  Google Scholar 

  33. Z.R. Addai, A. Abdullah, S.A. Mutalibx, Effect of extraction solvents on the phenolic content and antioxidant properties of two papaya cultivars. J. Med. Plant Res. 7(47), 3354–3359 (2022)

    Google Scholar 

  34. L.M. Vieira, M.S.B. Sousa, J. Mancini-Filho, A.D. Limax, Total phenolics and in vitro antioxidant capacity of tropical fruit pulps. Rev. Bras. Frutic. 33, 888–897 (2022). https://doi.org/10.1590/S0100-29452011005000099

    Article  Google Scholar 

  35. E.M.D.A. Siqueira, F.R. Rosa, A.M. Fustinoni, L.P. de Sant’Ana, S.F. Arruda, Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS ONE 8(8), e72826 (2013). https://doi.org/10.1371/journal.pone.0072826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. P.A. Harper, Review of the dietary intake, bioavailability, and health benefits of Ellagic Acid (EA) with a primary focus on its anti-cancer properties. Cureus (2023). https://doi.org/10.7759/cureus.43156

    Article  PubMed  PubMed Central  Google Scholar 

  37. E.L.F. Ferreira, J.P.C. Oliveira, M.R.S. Araújo, M. Rai, M.H. Chaves, Phytochemical profile and ethnopharmacological applications of Lecythidaceae: an overview. J. Ethnopharmacol. 274, 114049 (2021). https://doi.org/10.1016/j.jep.2021.114049

    Article  CAS  Google Scholar 

  38. P. Pandurangan, M. Sahadeven, S. Sunkar, S.K.N. Mohana Dhana, Comparative analysis of biochemical compounds of leaf, flower, and fruit of Couroupita guianensis and synthesis of silver nanoparticles. Pharmacogn. J. 10(2), 315–323 (2021). https://doi.org/10.5530/pj.2018.2.55

    Article  CAS  Google Scholar 

  39. T. Esposito, S. Pisanti, R. Martinelli, R. Celano, T. Mencherini, T. Re, R.P. Aquino, Couroupita guianensis bark decoction: from Amazonian medicine to the UHPLC-HRMS chemical profile and its role in inflammation processes and re-epithelialization. J. Ethnopharmacol. 313(15), 116579 (2023). https://doi.org/10.1016/j.jep.2023.116579

    Article  CAS  PubMed  Google Scholar 

  40. J. Sharifi-Rad, C. Quispe, C.M.S. Castillo, R. Caroca, M.A. Lazo-Velez, H. Antonyak, A. Polishchuk, R. Lysiuk, P. Oliinyk, L. De Masi, P. Bontempo, M. Martorell, S.D. Dastan, D. Rigano, M. Wink, W.C. Cho, Ellagic acid: a review on its natural sources, chemical stability, and therapeutic potential. Oxid. Med. Cell. Longev. 2022, 3848084 (2022). https://doi.org/10.1155/2022/3848084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. V. Koleckar, K. Kubikova, Z. Rehakova, K. Kuca, D. Jun, L. Jahodar, L. Opletal, Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev. Med. Chem. 8(5), 436–447 (2008). https://doi.org/10.2174/138955708784223486

    Article  CAS  PubMed  Google Scholar 

  42. T.C. De Barros, S.P. Teixeira, Morphology and ontogeny of tannin-producing structures in two tropical legume trees. Botany 92(7), 513–521 (2014). https://doi.org/10.1139/cjb-2014-0040

    Article  CAS  Google Scholar 

  43. A. Konarska, M. Domaciuk, Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma 255(1), 25–41 (2018). https://doi.org/10.1007/s00709-017-1130-z

    Article  CAS  PubMed  Google Scholar 

  44. P. Grundhöfer, R. Niemetz, G. Schilling, G.G. Gross, Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry 57(6), 915–927 (2001). https://doi.org/10.1016/S0031-9422(01)00099-1

    Article  PubMed  Google Scholar 

  45. P. Grundhöfer, G.G. Gross, Immunocytochemical studies on the origin and deposition sites of hydrolyzable tannins. Plant Sci. 160(5), 987–995 (2001). https://doi.org/10.1016/S0168-9452(01)00341-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the technical support provided by Adélia Mara Belém Lima (CENABIO/UFRJ) and Jefferson Bomfim Silva Cypriano (UNIMICRO/UFRJ) during the electron microscopy work. Special thanks are also extended to Kamila Marques Sette for her technical assistance.

Funding

This work received support from FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) under grant numbers E-26/210.404/2022 (C.S.C), E-26/201.418/2022 (C.S.C), E-26/201.464/2022 (J.V.P.), and E-26/201.362/2022 (I.A.R). Additional funding was provided by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under grant number 421121/2016–5 (J.V.P.) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.G.V., J.V.P., I.A.R and C.S.C.; Methodology, Investigation, Formal analysis: D.G.V, F.O.S, M.R.L.M., A.C.F.A., J.V.P., I.A.R and C.S.C.; Writing—original draft preparation: D.G.V., J.V.P., F.O.S, I.A.R and C.S.C.; Project administration: J.V.P., I.A.R. and C.S.C.; Writing – review & editing: C.S.C.

Corresponding authors

Correspondence to Juliana Villela Paulino or Carla Silva Carneiro.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloso, D.G., Paulino, J.V., Silva, F.O. et al. Nutritional, chemical, and morphological assessment of Couroupita guianensis: a potential edible fruit for human consumption. Food Measure (2024). https://doi.org/10.1007/s11694-024-02595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02595-7

Keywords

Navigation