Skip to main content
Log in

Emerging botanical processing technology of bioflavonoid for sustainable production of high value standardized nutraceutical ingredients: a review

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Herbal standardization is a crucial aspect in the field of herbal medicine and nutraceutical products. It refers to the process of developing and implementing standards to ensure the consistency, quality, and efficacy of herbal products. One important class of bioactive compounds that is widely distributed in plants is bioflavonoids, natural polyphenolic compounds. The significant pharmacological properties of bioflavonoids include antioxidant, anti-inflammatory, anti-diabetic, anti-aging and antimicrobial properties are promising therapeutic nutraceutical agents in the management of several acute and chronic diseases. However, the exploitation of these bioflavonoids demands systematic standardization approaches covering from extraction to enrichment of high-quality standardized multicomponent botanical extract in order to meet the desired efficacy. Hence, this review describes on the plant innovative processing technologies comprising of drying, solvent, extraction technique and adsorbent technologies accompanied with the established quality control methods using high end analytical instrument and omics technology. The importance of bioactive compound standardization and global demand of flavonoid in various applications are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Available on request.

Abbreviations

COS:

Conventional Organic Solvent

NaDES:

Natural Deep Eutectic Solvent

HBD:

Hydrogen Bond Donor

HBA:

Hydrogen Bond Acceptor

MAR:

Macroporous resin

UAE:

Ultrasonic: Assisted Extraction

References

  1. J.B. Harborne, X.I.V. Plant polyphenols, Characterization of flavonoid glycosides by acidic and enzymic hydrolyses. Phytochemistry [Internet]. 1965;4(1):107–20. http://www.sciencedirect.com/science/article/pii/S003194220086152X

  2. K.R. Markham, Flavones, Flavonols and their Glycosides. In: Methods in Plant Biochemistry: Volume 1: Plant Phenolics [Internet]. Academic Press Limited; 1989. pp. 197–235. http://linkinghub.elsevier.com/retrieve/pii/B9780124610118500123

  3. M.S. Che Zain, N.A. Jakariah, J.X. Yeoh, S.Y. Lee, K. Shaari, Ultrasound-assisted extraction of polyphenolic contents and Acid Hydrolysis of Flavonoid glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaf: optimization and correlation with free radical scavenging activity. Processes. 8(12), 1540 (2020)

    Article  Google Scholar 

  4. J. Xiao, E. Capanoglu, A.R. Jassbi, A. Miron, Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr. 56(May 2017), S29–45 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. M.S. Che Zain, M.F. Osman, S.Y. Lee, K. Shaari, UHPLC-UV/PDA Method Validation for Simultaneous Quantification of Luteolin and apigenin derivatives from Elaeis guineensis Leaf extracts: an application for antioxidant Herbal Preparation. Molecules. 26(4), 1085 (2020)

    Google Scholar 

  6. M.S. Che Zain, J.X. Yeoh, S.Y. Lee, A. Afzan, K. Shaari, Integration of Choline Chloride-based natural deep Eutectic solvents and Macroporous Resin for Green Production of Enriched Oil Palm Flavonoids as Natural Wound Healing agents. Antioxidants. 10(11), 1802 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M.S. Che Zain, S.Y. Lee, N. Mad Nasir, S. Fakurazi, K. Shaari, Metabolite characterization and correlations with antioxidant and Wound Healing Properties of Oil Palm (Elaeis guineensis Jacq.) Leaflets via 1H-NMR-Based Metabolomics Approach. Molecules. 25(23), 5636 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Y. Dong, M. Zhao, D. Sun-Waterhouse, M. Zhuang, H. Chen, M. Feng et al., Absorption and desorption behaviour of the flavonoids from Glycyrrhiza glabra L. leaf on macroporous adsorption resins. Food Chem [Internet]. 2015;168:538–45. https://doi.org/10.1016/j.foodchem.2014.07.109

  9. Y. Huang, F. Feng, J. Jiang, Y. Qiao, T. Wu, J. Voglmeir et al., Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem [Internet]. 2017;221:1400–5. https://doi.org/10.1016/j.foodchem.2016.11.013

  10. C. Li, Y. Zheng, X. Wang, S. Feng, D. Di, Simultaneous separation and purification of flavonoids and oleuropein from Olea europaea L. (olive) leaves using macroporous resin. J. Sci. Food Agric. 91(15), 2826–2834 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. P. Wan, Z. Sheng, Q. Han, Y. Zhao, G. Cheng, Y. Li, Enrichment and purification of total flavonoids from Flos Populi extracts with macroporous resins and evaluation of antioxidant activities in vitro. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 945–946, 68–74 (2014)

    Article  Google Scholar 

  12. S. Wu, Y. Wang, G. Gong, F. Li, H. Ren, Y. Liu, Adsorption and desorption properties of macroporous resins for flavonoids from the extract of Chinese wolfberry (Lycium barbarum L). Food Bioprod. Process. 93(December 2013), 148–155 (2015)

    Article  CAS  Google Scholar 

  13. A. García, E. Rodríguez-juan, G. Rodríguez-gutiérrez, J.J. Rios, J. Fernández-bolaños, Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 197, 554–561 (2016)

    Article  PubMed  Google Scholar 

  14. S. Bajkacz, J. Adamek, Development of a Method based on Natural Deep Eutectic solvents for extraction of flavonoids from Food samples. Food Anal. Methods. 11, 1330–1344 (2018)

    Article  Google Scholar 

  15. Y. Dai, G. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep Eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. chem. 85, 6272–6278 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. X. Liu, S. Ahlgren, H.A.A.J. Korthout, L.F. Salomé-Abarca, L.M. Bayona, R. Verpoorte et al., Broad range chemical profiling of natural deep eutectic solvent extracts using a high performance thin layer chromatography–based method. J. Chromatogr. A 1532, 198–207 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. K. Mulia, F. Muhammad, E. Krisanti, K. Mulia, F. Muhammad, E. Krisanti, Extraction of Vitexin from Binahong (Anredera cordifolia (Ten.) Steenis) Leaves using Betaine – 1, 4 Butanediol Natural Deep Eutectic Solvent (NADES). In: AIP Conference Proceedings. 2017. pp. 1–4

  18. Z. Wei, X. Qi, T. Li, M. Luo, W. Wang, Y. Zu et al., Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol [Internet]. 2015;149:237–44. https://doi.org/10.1016/j.seppur.2015.05.015

  19. M.S. Che Zain, J.X. Yeoh, S.Y. Lee, K. Shaari, Physicochemical properties of Choline Chloride-Based Natural Deep Eutectic solvents (NaDES) and their applicability for extracting Oil Palm flavonoids. Sustainability. 13(23), 12981 (2021)

    Article  CAS  Google Scholar 

  20. A. Ghasemi Pirbalouti, M. Oraie, M. Pouriamehr, E.S. Babadi, Effects of drying methods on qualitative and quantitative of the essential oil of Bakhtiari savory (Satureja bachtiarica Bunge.). Ind Crops Prod [Internet]. 2013;46:324–7. https://doi.org/10.1016/j.indcrop.2013.02.014

  21. Y.Y. Lim, J. Murtijaya, Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT - Food Sci. Technol. 40(9), 1664–1669 (2007)

    Article  CAS  Google Scholar 

  22. E.W.C. Chan, Y.Y. Lim, S.K. Wong, K.K. Lim, S.P. Tan, F.S. Lianto et al., Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem [Internet]. 2009;113(1):166–72. https://doi.org/10.1016/j.foodchem.2008.07.090

  23. R. Go, S.S. Kankara, M. Mustafa, H.M. Ibrahim, R. Nulit, Effect of Drying Methods, Solid-Solvent Ratio, Extraction Time and Extraction Temperature on Phenolic Antioxidants and Antioxidant Activity of Guiera senegalensis J.F. Gmel (Combretaceae) Leaves Water Extract. Am J Phytomedicine Clin Ther [Internet]. 2014;2(12):1378–92. http://www.ajpct.org/index.php/AJPCT/article/view/221

  24. A. Mediani, F. Abas, A. Khatib, H. Maulidiani, K. Shaari, Y.H. Choi et al., 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res. Int. 49(2), 763–770 (2012)

    Article  CAS  Google Scholar 

  25. A. Mediani, F. Abas, A. Khatib, C.P. Tan, I.S. Ismail, K. Shaari et al., Relationship between metabolites Composition and Biological activities of Phyllanthus niruri extracts prepared by different drying methods and solvents extraction. Plant. Foods Hum. Nutr. 70(2), 184–192 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. L.W. Khoo, A. Mediani, N.K.Z. Zolkeflee, S.W. Leong, I.S. Ismail, A. Khatib et al., Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochem Lett. 14, 123–133 (2015)

    Article  CAS  Google Scholar 

  27. E.S. Tan, A. Abdullah, M.Y. Maskat, Effect of drying methods on total antioxidant capacity of bitter gourd (Momordica charantia) fruit. AIP Conf Proc. 2013;1571:710–6

  28. V.J. Cheng, A.E.D.A. Bekhit, M. McConnell, S. Mros, J. Zhao, Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem [Internet]. 2012;134(1):474–82. https://doi.org/10.1016/j.foodchem.2012.02.103

  29. A.P. Breksa, G.R. Takeoka, M.B. Hidalgo, A. Vilches, J. Vasse, D.W. Ramming, Antioxidant activity and phenolic content of 16 raisin grape (Vitis vinifera L.) cultivars and selections. Food Chem [Internet]. 2010;121(3):740–5. https://doi.org/10.1016/j.foodchem.2010.01.029

  30. K.H. Kim, R. Tsao, R. Yang, S.W. Cui, Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95(3), 466–473 (2006)

    Article  CAS  Google Scholar 

  31. N. M’hiri, I. Ioannou, N. Mihoubi Boudhrioua, M. Ghoul, Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod Process [Internet]. 2015;96:161–70. https://doi.org/10.1016/j.fbp.2015.07.010

  32. I. Sánchez-Alonso, A. Jiménez-Escrig, F. Saura-Calixto, A.J. Borderías, Antioxidant protection of white grape pomace on restructured fish products during frozen storage. LWT - Food Sci. Technol. 41(1), 42–50 (2008)

    Article  Google Scholar 

  33. B.J. Xu, S.K.C. Chang, A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007;72(2)

  34. S. Guyot, N. Marnet, J.-F. Drilleau, Thiolysis-HPLC characterisation of apple procyanidins covering a large range of polymerisation states. J. Agric. Food Chem. 49(1), 14–20 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. B. Labarbe, V. Cheynier, F. Brossaud, J.M. Souquet, M. Moutounet, Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 47(7), 2719–2723 (1999)

    Article  CAS  PubMed  Google Scholar 

  36. R.L. Prior, S.A. Lazarus, G. Cao, H. Muccitelli, J.F. Hammerstone, Identification of procyanidins and anthocyanidins in blueberries and cranberries (Vaccinium spp.) using high performance Liquid Chromatography/Mass Spectrometry. J. Agric. Food Chem. 49, 1270–1276 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji et al., Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22(3), 296–302 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Perumal Siddhuraju and Klaus Becker, ‘Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa oleifera Lam.) Leaves’,J. Agric. Food Chem., 51 (8), pp 2144–2,2003. J Agric Food Chem. 2003;51(8):2144–55

  39. B. Sultana, F. Anwar, M. Ashraf, Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 14(6), 2167–2180 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Markom, M. Hasan, W.R.W. Daud, H. Singh, J.M. Jahim, Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: effects of solvents and extraction methods. Sep. Purif. Technol. 52(3), 487–496 (2007)

    Article  CAS  Google Scholar 

  41. A. Mediani, F. Abas, A. Khatib, C.P. Tan, I.S. Ismail, K. Shaari et al., Phytochemical and biological features of Phyllanthus niruri and Phyllanthus urinaria harvested at different growth stages revealed by1H NMR-based metabolomics. Ind Crops Prod [Internet]. 2015;77:602–13. https://doi.org/10.1016/j.indcrop.2015.09.036

  42. N. Trabelsi, W. Megdiche, R. Ksouri, H. Falleh, S. Oueslati, B. Soumaya et al., Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT - Food Sci Technol [Internet]. 2010;43(4):632–9. https://doi.org/10.1016/j.lwt.2009.11.003

  43. R. Martínez, L. Berbegal, G. Guillena, D.J. Ramón, Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green. Chem. 18(6), 1724–1730 (2016)

    Article  Google Scholar 

  44. C. Capello, U. Fischer, K. Hungerbühler, What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green. Chem. 9(9), 927–934 (2007)

    Article  CAS  Google Scholar 

  45. T. Welton, Solvents and sustainable chemistry. Proc. R Soc. Math. Phys. Eng. Sci. 471(2183), 1–26 (2015)

    Google Scholar 

  46. H. Vanda, Y. Dai, E.G. Wilson, R. Verpoorte, Y.H. Choi, Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chim. 21(6), 628–638 (2018)

    Article  CAS  Google Scholar 

  47. Y. Dai, van J. Spronsen, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 766, 61–68 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. M. Espino, M. de los Ángeles Fernández, F.J.V. Gomez, M.F. Silva, Natural designer solvents for greening analytical chemistry. TrAC - Trends Anal. Chem. 76(April 2016), 126–136 (2016)

    Article  CAS  Google Scholar 

  49. Y.H. Choi, van J. Spronsen, Y. Dai, M. Verberne, F. Hollmann, I.W.C.E. Arends et al., Are Natural Deep Eutectic solvents the Missing Link in understanding Cellular Metabolism and Physiology? Plant. Physiol. 156(4), 1701–1705 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Y. Dai, E. Rozema, R. Verpoorte, Y.H. Choi, Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J Chromatogr A [Internet]. 2016;1434:50–6. https://doi.org/10.1016/j.chroma.2016.01.037

  51. Y. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem [Internet]. 2015;187:14–9. https://doi.org/10.1016/j.foodchem.2015.03.123

  52. Q. Cui, X. Peng, X. Yao, Z. Wei, M. Luo, W. Wang et al., Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep Purif Technol [Internet]. 2015;150:63–72. https://doi.org/10.1016/j.seppur.2015.06.026

  53. A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain. Chem. Eng. 2(5), 1063–1071 (2014)

    Article  CAS  Google Scholar 

  54. T. Bosiljkov, F. Dujmić, M. Cvjetko Bubalo, J. Hribar, R. Vidrih, M. Brnčić et al., Natural deep eutectic solvents and ultrasound-assisted extraction: green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process. 102, 195–203 (2017)

    Article  CAS  Google Scholar 

  55. A.P.R. Santana, D.F. Andrade, J.A. Mora-Vargas, C.D.B. Amaral, A. Oliveira, M.H. Gonzalez, Natural deep eutectic solvents for sample preparation prior to elemental analysis by plasma-based techniques. Talanta. 199(February), 361–369 (2019)

    Article  CAS  PubMed  Google Scholar 

  56. B. Tang, K.H. Row, Recent developments in deep eutectic solvents in chemical sciences. Monatshefte fur Chemie. 144(10), 1427–1454 (2013)

    Article  CAS  Google Scholar 

  57. M. Francisco, Van Den A. Bruinhorst, M.C. Kroon, Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chemie - Int. Ed. 52(11), 3074–3085 (2013)

    Article  CAS  Google Scholar 

  58. M.W. Nam, J. Zhao, M.S. Lee, J.H. Jeong, J. Lee, Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green. Chem. 17, 1718–1727 (2015)

    Article  CAS  Google Scholar 

  59. K. Rado, N. Curko, M.C. Bubalo, K. Kova, I. Radoj, LWT - Food Science and Technology Natural deep eutectic solvents as bene fi cial extractants for enhancement of plant extracts bioactivity c Gani. 2016;73:45–51

  60. A.P.R. Santana, J.A. Mora-Vargas, T.G.S. Guimarães, C.D.B. Amaral, A. Oliveira, M.H. Gonzalez, Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J. Mol. Liq. 293, 111452 (2019)

    Article  CAS  Google Scholar 

  61. Q. Zhang, De K. Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41(21), 7108–7146 (2012)

    Article  CAS  PubMed  Google Scholar 

  62. L. Wang, B. Yang, X. Du, C. Yi, Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chem. 108(2), 737–741 (2008)

    Article  CAS  PubMed  Google Scholar 

  63. M.C. Lin, M.J. Tsai, K.C. Wen, Supercritical fluid extraction of flavonoids from Scutellariae Radix. J. Chromatogr. A 830(2), 387–395 (1999)

    Article  CAS  Google Scholar 

  64. K.L. Chiu, Y.C. Cheng, J.H. Chen, C.J. Chang, P.W. Yang, Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids. J. Supercrit Fluids. 24(1), 77–87 (2001)

    Article  Google Scholar 

  65. Z. Wei, X. Wang, X. Peng, W. Wang, C. Zhao, Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind Crop Prod [Internet]. 2015;63:175–81. https://doi.org/10.1016/j.indcrop.2014.10.013

  66. M. Alanon, M. Ivanovic, A. Gomez-Caravaca, D. Arraez-Roman, Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 13(1), 1685–1701 (2018)

    Article  Google Scholar 

  67. W. Bi, M. Tian, K. Ho, Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J Chromatogr A [Internet]. 2013;1285:22–30. https://doi.org/10.1016/j.chroma.2013.02.041

  68. X. Yao, D. Zhang, M. Duan, Q. Cui, W. Xu, M. Luo et al., Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent. Sep Purif Technol [Internet]. 2015;149:116–23. https://doi.org/10.1016/j.seppur.2015.03.037

  69. M. Vinatoru, An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8(3), 303–313 (2001)

    Article  CAS  PubMed  Google Scholar 

  70. S. Albu, E. Joyce, L. Paniwnyk, J.P. Lorimer, T.J. Mason, Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason. Sonochem. 11(3–4), 261–265 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Yang, F. Zhang, Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrasound. 15, 308–313 (2008)

    CAS  Google Scholar 

  72. M.C. Herrera, M.D. Luque De Castro, Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Anal. Bioanal Chem. 379(7–8), 1106–1112 (2004)

    CAS  PubMed  Google Scholar 

  73. M.A. Rostagno, M. Palma, C.G. Barroso, Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 1012(2), 119–128 (2003)

    Article  CAS  PubMed  Google Scholar 

  74. Z. Hromádková, Z. Košt’álová, A. Ebringerová, Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrason. Sonochem. 15(6), 1062–1068 (2008)

    Article  PubMed  Google Scholar 

  75. J.-L. Laborde, C. Bouyer, J.-P. Caltagirone, A. Gkard ’, Acoustic bubble cavitation at low frequencies. Ultrasonics. 36, 589–594 (1998)

    Article  Google Scholar 

  76. T. Mason, The uses of ultrasound in food technology. Ultrason Sonochem [Internet]. 1996;3(3):S253–60. http://linkinghub.elsevier.com/retrieve/pii/S135041779600034X

  77. M. Vinatoru, M. Toma, O. Radu, P.I. Filip, D. Lazurca, T.J. Mason, The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason. Sonochem. 4(2), 135–139 (1997)

    Article  CAS  PubMed  Google Scholar 

  78. M.C. Herrera, M.D. Luque De Castro, Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection. J. Chromatogr. A 1100(1), 1–7 (2005)

    Article  CAS  PubMed  Google Scholar 

  79. A. Bucić-Kojić, M. Planinić, S. Tomas, S. Jokić, I. Mujić, M. Bilić et al., Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus Carica L.). Polish J Food Nutr Sci [Internet]. 2011;61(3):195–9. http://www.degruyter.com/view/j/pjfns.2011.61.issue-3/v10222-011-0021-9/v10222-011-0021-9.xml

  80. I. Tomaz, L. Maslov, D. Stupić, D. Preiner, D. Ašperger, Karoglan Kontić J. Solid-Liquid extraction of phenolics from red grape skins. Acta Chim. Slov. 63(2), 287–297 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. F. Benmeziane, R. Djamai, Y. Cadot, R. Seridi, Optimization of extraction parameters of phenolic compounds from Algerian fresh table grapes, (Vitis Vinifera). Int. Food Res. J. 21(3), 1025–1029 (2014)

    Google Scholar 

  82. M. Naczk, F. Shahidi, Extraction and analysis of phenolics in food. J. Chromatogr. A 1054(1–2), 95–111 (2004)

    Article  CAS  PubMed  Google Scholar 

  83. M.C. Tan, C.P. Tan, C.W. Ho, Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. Int. Food Res. J. 20(6), 3117–3123 (2013)

    CAS  Google Scholar 

  84. J.E. Cacace, G. Mazza, Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol. J Food Sci [Internet]. 2006;68(1):240–8. https://doi.org/10.1111/j.1365-2621.2003.tb14146.x

  85. M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, M.J. Núñez, Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 53(6), 2111–2117 (2005)

    Article  CAS  PubMed  Google Scholar 

  86. M. Pinelo, A. Arnous, A.S. Meyer, Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 17(11), 579–590 (2006)

    Article  CAS  Google Scholar 

  87. K. Robards, Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J. Chromatogr. A 1000, 657–691 (2003)

    Article  CAS  PubMed  Google Scholar 

  88. J.B. Harborne, Anthocyanins as food colours. Phytochemistry. 22(4), 1067–1068 (1983)

    Google Scholar 

  89. L. Havlíková, K. Míková, Heat Stability of Anthocyanins. Z. Lebensm Unters Forsch. 181(5), 427–432 (1985)

    Article  Google Scholar 

  90. A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds. Molecules. 18(2), 2328–2375 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. A. Michalkiewicz, M. Biesaga, K. Pyrzynska, Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J. Chromatogr. A 1187(1–2), 18–24 (2008)

    Article  CAS  PubMed  Google Scholar 

  92. L. Chao, Z. Hong, Z. Li, Z. Gang, Study on adsorption characteristic of macroporou resin to phenol in wastewater. Can. J. Chem. Eng. 88(3), 417–424 (2010)

    Article  CAS  Google Scholar 

  93. Z. Liang, B. Li, Y. Liang, Y. Su, Y. Ito, Separation and purification of two minor compounds from radix isatidis by integrative MPLC and HSCCC with preparative HPLC. J. Liq Chromatogr. Relat. Technol. 38(5), 37–41 (2015)

    Article  Google Scholar 

  94. D.Y. Zhang, Y.G. Zu, Y.J. Fu, W. Wang, L. Zhang, M. Luo et al., Aqueous two-phase extraction and enrichment of two main flavonoids from pigeon pea roots and the antioxidant activity. Sep Purif Technol [Internet]. 2013;102:26–33. https://doi.org/10.1016/j.seppur.2012.09.019

  95. D. Zou, T. Chen, C. Chen, H. Li, Y. Liu, Y. Li, An efficient protocol for Preparation of gallic acid from Terminalia bellirica (Gaertn.) Roxb by Combination of Macroporous Resin and Preparative High-Performance Liquid Chromatography. J. Chromatogr. Sci. 54(7), 1220–1224 (2016)

    Article  CAS  PubMed  Google Scholar 

  96. K.W. Pepper, Sulphonated cross-linked polystyrene: A monofunctional cation-exchange resin. J Appl Chem [Internet]. 2007;1(3):124–32. http://doi.wiley.com/https://doi.org/10.1002/jctb.5010010307

  97. Y. Sun, X. Zhang, X. Xue, Y. Zhang, H. Xiao, X. Liang, Rapid identification of polyphenol C-glycosides from Swertia franchetiana by HPLC-ESI-MS-MS. J. Chromatogr. Sci. 47(3), 190–196 (2009)

    Article  CAS  PubMed  Google Scholar 

  98. I.M. Abrams, Macroporous Condensate Resins as Adsorbents. Ind. Eng. Chem. Prod. Res. Dev. 14(2), 108–112 (1975)

    CAS  Google Scholar 

  99. S.D. Alexandratos, Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind. Eng. Chem. Res. 48(1), 388–398 (2009)

    Article  CAS  Google Scholar 

  100. J. Li, H.A. Chase, Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat. Prod. Rep. 27(10), 1493 (2010)

    Article  CAS  PubMed  Google Scholar 

  101. M. Scordino, Di A. Mauro, A. Passerini, E. Maccarone, Adsorption of flavonoids on resins: cyanidin 3-Glucoside. J. Agric. Food Chem. 52(7), 1965–1972 (2004)

    Article  CAS  PubMed  Google Scholar 

  102. S. Lou, Z. Chen, Y. Liu, H. Ye, D. Di, Synthesis of functional adsorption resin and its adsorption properties in purification of flavonoids from Hippophae rhamnoides L. leaves. Ind. Eng. Chem. Res. 51(6), 2682–2696 (2012)

    Article  CAS  Google Scholar 

  103. Y. Sun, H. Yuan, L. Hao, C. Min, J. Cai, J. Liu et al., Enrichment and antioxidant properties of flavone C-glycosides from trollflowers using macroporous resin. Food Chem. 141(1), 533–541 (2013)

    Article  CAS  PubMed  Google Scholar 

  104. H. Du, H. Wang, J. Yu, C. Liang, W. Ye, P. Li, Enrichment and purification of total flavonoid C-glycosides from abrus Mollis extracts with macroporous resins. Ind. Eng. Chem. Res. 51(21), 7349–7354 (2012)

    Article  CAS  Google Scholar 

  105. K.-M.F. Hui Guo, and J-QQ. Purification of Flavone C-Glycosides from Bamboo Leaves by Macroporous Adsorption Resin. Asian J Chem [Internet]. 2014;26(21):7221–5. https://doi.org/10.14233/ajchem.2014.16570%0APurification

  106. Y. Zhang, J. Jiao, C. Liu, X. Wu, Y. Zhang, Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography. Food Chem. 107(3), 1326–1336 (2008)

    CAS  Google Scholar 

  107. S. Huang, B. Lin, B. Li, B. Tan, Y. Hong, Purification of total flavonoids from loquat leaves by macroporous resin and corresponding antioxidant capacity. In: BIO Web of Conferences. 2017. pp. 4–11

  108. J. Ren, Y. Zheng, Z. Lin, X. Han, W. Liao, Macroporous resin purification and characterization of flavonoids from Platycladus orientalis (L.) Franco and their effects on macrophage inflammatory response. Food Funct [Internet]. 2017;8(1):86–95. http://xlink.rsc.org/?DOI=C6FO01474G

  109. P. Li, Y. Lu, S. Du, J. Bai, H. Liu, Q. Guo et al., Extraction and purification of flavonoids from radix puerariae. Trop. J. Pharm. Res. 12(6), 919–927 (2013)

    Article  Google Scholar 

  110. Y. Fu, Y. Zu, W. Liu, C. Hou, L. Chen, S. Li et al., Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. J. Chromatogr. A 1139(2), 206–213 (2007)

    Article  CAS  PubMed  Google Scholar 

  111. X. Wang, Y. Liang, L. Zhu, H. Xie, H. Li, J. He et al., Preparative isolation and purification of flavone C-glycosides from the leaves of ficus microcarpa L.f by medium-pressure liquid chromatography, high-speed countercurrent chromatography, and preparative liquid chromatography. J. Liq Chromatogr. Relat. Technol. 33(4), 462–480 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  112. X.H. Lv, P.Q. Kuang, Q.P. Yuan, H. Liang, G.Q. Zheng, Preparative separation of steviol glycosides from Stevia rebaudiana bertoni by macroporous resin and preparative HPLC. Acta Chromatogr [Internet]. 2014;26(1):123–35. http://www.akademiai.com/doi/abs/https://doi.org/10.1556/AChrom.26.2014.1.10

  113. A.R.G. Bagh, Adsorption of acid, green 25 dye solution using modifed and unmodified kenaf fiber,. Universiti Putra Malaysia; 2015

  114. R.J. Jawad, Emoval of iron and oil from palm oil mill effluent using chitosan coated, alginate–mangrove composite beads [Internet],. Vol. 3. Universiti Putra Malaysia; 2016. https://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Report_2018.pdf;http://eprints.lse.ac.uk/43447/1/India_globalisation%2Csocietyandinequalities%28lsero%29.pdf;https://www.quora.com/What-is-the.

  115. C.T. Chiou, Fundamentals of the Adsorption Theory. In: Partition and Adsorption of Organic Contaminants in Environmental Systems [Internet]. 2003. pp. 39–52. https://doi.org/10.1002/0471264326.ch4

  116. E.M. McCash, Adsorption and desorption. Surf Chem. 2001;4(1991):52–122

  117. M.S. Che Zain, S.Y. Lee, C.Y. Teo, K. Shaari, Adsorption and Desorption properties of total flavonoids from Oil Palm (Elaeis guineensis Jacq.) Mature Leaf on Macroporous Adsorption Resins. Molecules. 25(4), 778 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  118. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore and Solid Diffusion Kinetics in fixed-Bed Adsorption under constant pattern conditions. I&EC Fundam. 1966;5(2):212–223

  119. H. Freundlich, Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie [Internet]. 1907;57:385–470. http://www.degruyter.com/view/j/zpch.1907.57.issue-1/zpch-1907-5723/zpch-1907-5723.xml

  120. I. Langmuir, Modelisation of adsorption. Phys. Rev. Journals. 6, 79–80 (1915)

    CAS  Google Scholar 

  121. A. Augustyn, P. Bauer, B. Duignan, A. Eldridge, E. Gregersen, J.E. Luebering et al., Enthalpy. In: Encyclopædia Britannica [Internet]. Encyclopædia Britannica, inc.; 2018. https://www.britannica.com/science/enthalpy

  122. A.S. Özcan, A. Özcan, Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interface Sci. 276(1), 39–46 (2004)

    Article  PubMed  Google Scholar 

  123. A. Rehwald, B. Meier, O. Sticher, Qualitative and quantitative reversed-phase high-performance liquid chromatography of flavonoids in Passiflora incarnata L. Pharm. Acta Helv. 69(3), 153–158 (1994)

    Article  CAS  Google Scholar 

  124. K. Pyrzynska, M. Biesaga, Analysis of phenolic acids and flavonoids in honey. TrAC - Trends Anal Chem [Internet]. 2009;28(7):893–902. https://doi.org/10.1016/j.trac.2009.03.015

  125. L. Nováková, Z. Spáčil, M. Seifrtová, L. Opletal, P. Solich, Rapid qualitative and quantitative ultra high performance liquid chromatography method for simultaneous analysis of twenty nine common phenolic compounds of various structures. Talanta. 80(5), 1970–1979 (2010)

    Article  PubMed  Google Scholar 

  126. N. Ortega, M.P. Romero, A. Macià, J. Reguant, N. Anglès, J.R. Morelló et al., Comparative study of UPLC-MS/MS and HPLC-MS/MS to determine procyanidins and alkaloids in cocoa samples. J. Food Compos. Anal. 23(3), 298–305 (2010)

    Article  CAS  Google Scholar 

  127. W.J. Griffiths, P. Jonsson a, S. Liu, D.K. Rai, Y. Wang, Electrospray and tandem mass spectrometry in biochemistry. Biochem. J. 355, 545–561 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. S. Kazuno, M. Yanagida, N. Shindo, K. Murayama, Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Anal. Biochem. 347(2), 182–192 (2005)

    Article  CAS  PubMed  Google Scholar 

  129. J. Dron, G. Eyglunent, B. Temime-Roussel, N. Marchand, H. Wortham, Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry. Anal. Chim. Acta. 605(1), 61–69 (2007)

    Article  CAS  PubMed  Google Scholar 

  130. F. Cuyckens, M. Claeys, Mass spectrometry in the structural analysis of flavonoids. J. Mass. Spectrom. 39(1), 1–15 (2004)

    Article  CAS  PubMed  Google Scholar 

  131. L. Wang, M.E. Morris, Liquid chromatography-tandem mass spectroscopy assay for quercetin and conjugated quercetin metabolites in human plasma and urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 821(2), 194–201 (2005)

    Article  CAS  Google Scholar 

  132. N. Fabre, I. Rustan, De E. Hoffmann, J. Quetin-Leclercq, Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass. Spectrom. 12(6), 707–715 (2001)

    Article  CAS  PubMed  Google Scholar 

  133. N.I. Tahir, K. Shaari, F. Abas, G.K.A. Parveez, Z. Ishak, U.S. Ramli, Characterization of apigenin and luteolin derivatives from oil palm (Elaeis guineensis Jacq.) Leaf using LC-ESI-MS/MS. J. Agric. Food Chem. 60(45), 11201–11210 (2012)

    Article  CAS  PubMed  Google Scholar 

  134. V.M. Shinde, K. Dhalwal, M. Potdar, K.R. Mahadik, Application of Quality Control Principles to Herbal Drugs. Int J Phytomedicine [Internet]. 2009;1(1):4–8. http://www.arjournals.org/phytomed/ijpm.2009.0975.0185.05786.pdf

  135. N. Baber, International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH). Br J Clin Pharmacol [Internet]. 1994;37:401–4. http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/good-clinical-practice.html

  136. T. Sultana, G. Stecher, R. Mayer, L. Trojer, M.N. Qureshi, G. Abel et al., Quality assessment and quantitative analysis of flavonoids from tea samples of different origins by HPLC-DAD-ESI-MS. J. Agric. Food Chem. 56(10), 3444–3453 (2008)

    Article  CAS  PubMed  Google Scholar 

  137. A. Tolonen, J. Uusitalo, Fast screening method for the analysis of total flavonoid content in plants and foodstuffs by high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry with polarity switching. Rapid Commun. Mass. Spectrom. 18(24), 3113–3122 (2004)

    Article  CAS  PubMed  Google Scholar 

  138. H.J. Choi, D.H. Park, S.H. Song, I.S. Yoon, S.S. Cho, Development and validation of a HPLC-UV method for extraction optimization and biological evaluation of hot-water and ethanolic extracts of dendropanax morbifera leaves. Molecules 2018;23(3)

  139. L.P. Landim, G.S. Feitoza, da J.G.M. Costa, Development and validation of a HPLC method for the quantification of three flavonoids in a crude extract of Dimorphandra Gardneriana. Rev. Bras. Farmacogn. 23(1), 58–64 (2013)

    Article  CAS  Google Scholar 

  140. J.L. Chelyn, M.H. Omar, N.S.A. Mohd Yousof, R. Ranggasamy, M.I. Wasiman, Z. Ismail, Analysis of flavone C -glycosides in the leaves of clinacanthus nutans (Burm. f.) Lindau by HPTLC and HPLC-UV/DAD. Sci. World J. 2014(October), 1–7 (2014)

    Article  Google Scholar 

  141. Á.A. Dér, LC-ESI-MS/MS methods in profiling of flavonoid glycosides and phenolic acids in traditional medicinal plants: Sempervivum tectorum L. and Corylus avellana L. PhD Thesis. Semmelweis University; 2014

  142. D. Barreca, E. Bellocco, C. Caristi, U. Leuzzi, G. Gattuso, Distribution of C- and O-glycosyl flavonoids, (3-hydroxy-3-methylglutaryl)glycosyl flavanones and furocoumarins in Citrus aurantium L. juice. Food Chem [Internet]. 2011;124(2):576–82. https://doi.org/10.1016/j.foodchem.2010.06.076

  143. Y. Hong, F.A. Tomas-Barberan, A.A. Kader, A. Mitchell, The flavonoid glycosides and procyanidin composition of deglrt noor dates (pheonix dactylifera). J. Agric. Food Chem. 54, 2405–2411 (2006)

    Article  CAS  PubMed  Google Scholar 

  144. J.R. Greenham, R.J. Grayer, J.B. Harborne, V. Reynolds, Intra- and interspecific variations in vacuolar flavonoids among Ficus species from the Budongo Forest, Uganda. Biochem. Syst. Ecol. 35(2), 81–90 (2007)

    Article  CAS  Google Scholar 

  145. J. Zhang, J. Yang, J. Duan, Z. Liang, L. Zhang, Y. Huo et al., Quantitative and qualitative analysis of flavonoids in leaves of Adinandra Nitida by high performance liquid chromatography with UV and electrospray ionization tandem mass spectrometry detection. Anal. Chim. Acta. 532(1), 97–104 (2005)

    Article  CAS  Google Scholar 

  146. C. Caristi, E. Bellocco, V. Panzera, G. Toscano, R. Vadalà, U. Leuzzi, Flavonoids detection by HPLC-DAD-MS-MS in lemon juices from sicilian cultivars. J. Agric. Food Chem. 51(12), 3528–3534 (2003)

    Article  CAS  PubMed  Google Scholar 

  147. A. Romani, P. Vignolini, L. Isolani, F. Ieri, D. Heimler, HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. Subsp. sylvestris L). J. Agric. Food Chem. 54(4), 1342–1346 (2006)

    Article  CAS  PubMed  Google Scholar 

  148. S.L. Moraes, L.E. Gregório, J.C. Tomaz, N.P. Lopes, Rapid Screening and Identification of Polar Constituents from Brazilian Arnica Lychnophora sp. by LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS Analysis. Chromatographia [Internet]. 2009;69(S2):157–65. http://www.springerlink.com/index/https://doi.org/10.1365/s10337-009-1036-9

  149. W. Wu, C. Yan, L. Li, Z. Liu, S. Liu, Studies on the flavones using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 1047(2), 213–220 (2004)

    Article  CAS  PubMed  Google Scholar 

  150. N. Fang, S. Yu, R.L. Prior, LC/MS/MS characterization of phenolic constituents in dried plums. J. Agric. Food Chem. 50(12), 3579–3585 (2002)

    Article  CAS  PubMed  Google Scholar 

  151. M.J. Simirgiotis, P.D.S. Caligari, G. Schmeda-Hirschmann, Identification of phenolic compounds from the fruits of the mountain papaya Vasconcellea pubescens A. DC. grown in Chile by liquid chromatography-UV detection-mass spectrometry. Food Chem [Internet]. 2009;115(2):775–84. https://doi.org/10.1016/j.foodchem.2008.12.071

  152. S. Oelschlaegel, M. Gruner, P.N. Wang, A. Boettcher, I. Koelling-Speer, K. Speer, Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem. 60(29), 7229–7237 (2012)

    Article  CAS  PubMed  Google Scholar 

  153. M. Stobiecki, A. Skirycz, L. Kerhoas, P. Kachlicki, D. Muth, J. Einhorn et al., Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics. 2(4), 197–219 (2006)

    Article  CAS  Google Scholar 

  154. C.F. Verdu, J. Gatto, I. Freuze, P. Richomme, F. Laurens, D. Guilet, Comparison of two methods, UHPLC-UV and UHPLC-MS/MS, for the quantification of polyphenols in cider apple juices. Molecules. 18(9), 10213–10227 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. M. Ceymann, E. Arrigoni, H. Schäarer, D. Baumgartner, A.B. Nising, R.F. Hurrell, Rapid high performance screening method using UHPLC-MS to quantify 12 polyphenol compounds in fresh apples. Anal. Methods. 3(8), 1774–1778 (2011)

    Article  CAS  Google Scholar 

  156. H.M. Heyman, J.J.M. Meyer, NMR-based metabolomics as a quality control tool for herbal products. South. Afr. J. Bot. 82, 21–32 (2012)

    Article  CAS  Google Scholar 

  157. N.E. Thomford, K. Dzobo, E. Chimusa, K. Andrae-Marobela, S. Chirikure, A. Wonkam et al., Personalized Herbal Medicine? A Roadmap for Convergence of Herbal and Precision Medicine Biomarker innovations. Omi J. Integr. Biol. 22(6), 375–391 (2018)

    Article  CAS  Google Scholar 

  158. J.-L. Wolfender, S. Rudaz, Y. Hae Choi, H. Kyong Kim, Plant Metabolomics: from holistic data to relevant biomarkers. Curr. Med. Chem. 20(8), 1056–1090 (2013)

    CAS  PubMed  Google Scholar 

  159. S.L. Robinette, R. Brüschweiler, F.C. Schroeder, A.S. Edison, NMR in metabolomics and natural products research: two sides of the same coin. Acc. Chem. Res. 45(2), 288–297 (2012)

    Article  CAS  PubMed  Google Scholar 

  160. H.K. Kim, Y.H. Choi, R. Verpoorte, NMR-based metabolomic analysis of plants. Nat. Protoc. 5(3), 536–549 (2010)

    Article  CAS  PubMed  Google Scholar 

  161. R. Verpoorte, Y.H. Choi, H.K. Kim, Metabolomics: what’s new? Flavour. Fragr. J. 25(3), 128–131 (2010)

    Article  CAS  Google Scholar 

  162. S. Wagner, K. Scholz, M. Donegan, L. Burton, J. Wingate, W. Völkel, Metabonomics and biomarker discovery: LC-MS metabolic profiling and constant neutral loss scanning combined with multivariate data analysis for mercapturic acid analysis. Anal. Chem. 78(4), 1296–1305 (2006)

    Article  CAS  PubMed  Google Scholar 

  163. L. Giansante, Di D. Vincenzo, G. Bianchi, Classification of monovarietal Italian olive oils by unsupervised (PCA) and supervised (LDA) chemometrics. J. Sci. Food Agric. 83(9), 905–911 (2003)

    Article  CAS  Google Scholar 

  164. P. Jonsson, J. Gullberg, A. Nordstrm, M. Kusano, M. Kowalczyk, M. Sjstrm et al., A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76(6), 1738–1745 (2004)

    Article  CAS  PubMed  Google Scholar 

  165. B. Lendl, B. Karlberg, Advancing from unsupervised, single variable-based to supervised, multivariate-based methods: a challenge for qualitative analysis. TrAC - Trends Anal. Chem. 24(6), 488–492 (2005)

    Article  CAS  Google Scholar 

  166. N.H. Shuib, K. Shaari, A. Khatib, R. Maulidiani, Kneer, S. Zareen et al., Discrimination of young and mature leaves of Melicope ptelefolia using1H NMR and multivariate data analysis. Food Chem [Internet]. 2011;126(2):640–5. https://doi.org/10.1016/j.foodchem.2010.10.043

  167. P. Meinicke, T. Lingner, A. Kaever, K. Feussner, C. Göbel, I. Feussner et al., Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps. Algorithms Mol. Biol. 3(1), 1–18 (2008)

    Article  Google Scholar 

  168. K.A. Kaiser, G.A. Barding, C.K. Larive, A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana. Magn Reson Chem [Internet]. 2009;47(S1):S147–56. https://doi.org/10.1002/mrc.2457

  169. S.Y. Lee, F. Abas, A. Khatib, I.S. Ismail, K. Shaari, N. Zawawi, Metabolite profiling of Neptunia oleracea and correlation with antioxidant and α-glucosidase inhibitory activities using 1H NMR-based metabolomics. Phytochem Lett. 16, 23–33 (2016)

    Article  CAS  Google Scholar 

  170. A.C. Martin, A.D. Pawlus, E.M. Jewett, D.L. Wyse, C.K. Angerhofer, A.D. Hegeman, Evaluating solvent extraction systems using metabolomics approaches. RSC Adv. 4(50), 26325–26334 (2014)

    Article  CAS  Google Scholar 

  171. P. Pramai, N.A. Abdul Hamid, A. Mediani, M. Maulidiani, F. Abas, S. Jiamyangyuen, Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear magnetic resonance based metabolomics study. J. Food Drug Anal. 26(1), 47–57 (2016)

    Article  Google Scholar 

  172. A. Sharma, A. Cardoso-Taketa, Y.H. Choi, R. Verpoorte, M.L. Villarreal, A comparison on the metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca four years later. J Ethnopharmacol [Internet]. 2012;141(3):964–74. https://doi.org/10.1016/j.jep.2012.03.033

  173. N.Q. Liu, M. Cao, M. Frédérich, Y.H. Choi, R. Verpoorte, van der F. Kooy, Metabolomic investigation of the ethnopharmacological use of Artemisia afra with NMR spectroscopy and multivariate data analysis. J. Ethnopharmacol. 128(1), 230–235 (2010)

    Article  PubMed  Google Scholar 

  174. L. Paudel, F.J. Wyzgoski, M.M. Giusti, J.L. Johnson, P.L. Rinaldi, J.C. Scheerens et al., NMR-based metabolomic investigation of bioactivity of chemical constituents in black raspberry (Rubus occidentalis L.) fruit extracts. J. Agric. Food Chem. 62(8), 1989–1998 (2014)

    Article  CAS  PubMed  Google Scholar 

  175. G.I. Hernández-Bolio, E. Kutzner, W. Eisenreich, de J.F. Jesús Torres-Acosta, L.M. Peña-Rodríguez, The use of 1 H-NMR metabolomics to optimise the extraction and Preliminary Identification of Anthelmintic Products from the leaves of Lysiloma latisiliquum. Phytochem Anal. 29(4), 413–420 (2017)

    Article  PubMed  Google Scholar 

  176. S.N. Ismail, M. Maulidiani, M.T. Akhtar, F. Abas, I.S. Ismail, A. Khatib et al., Discriminative analysis of different grades of Gaharu (Aquilaria malaccensis Lamk.) via1H-NMR-Based Metabolomics using PLS-DA and Random forests classification models. Molecules. 22(1612), 1–13 (2017)

    Google Scholar 

  177. S.K. Daley, G.A. Cordell, Natural products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat. Prod. Commun. 2021;16(3)

  178. A. Balekundri, V. Mannur, Quality control of the traditional herbs and herbal products: a review. Futur J. Pharm. Sci. 2020;6(1)

  179. R. Faisal, L. Shinwari, I. Aziz, A.T. Khalil, Therapeutic and adverse effects of commonly used medicinal plants: standardization and quality assurance. Proc. Pakistan Acad. Sci. Part. B 56(3BSpecial Issue), 1–9 (2019)

    Google Scholar 

  180. I. Ara, M. Maqbool, B. Bukhari, N. Ara, T.A. Hajam, Pharmaceutical sciences and Technology Present status, standardization and safety issues with herbal drugs. 2020;1:98–101

  181. Grand View Research I. Flavonoids Market Size To Reach $1.06 Billion By 2025 [Internet]. United States, 2016. https://www.grandviewresearch.com/press-release/global-flavonoids-marke

Download references

Acknowledgements

The author would like to acknowledge Universiti Sains Malaysia for financial support through USM Short Term Grant (Grant number: 304/PTEKIND/6315802).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mohamad Shazeli Che Zain conceptualized, collected and analyzed the data, wrote and edited the manuscript.

Corresponding author

Correspondence to Mohamad Shazeli Che Zain.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares there is no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che Zain, M.S. Emerging botanical processing technology of bioflavonoid for sustainable production of high value standardized nutraceutical ingredients: a review. Food Measure (2024). https://doi.org/10.1007/s11694-024-02591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02591-x

Keywords

Navigation