Skip to main content
Log in

Electrode impedance modeling based on XGboost algorithm for analyzing the antioxidant properties of juice

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study presents a novel approach integrating electrochemical impedance spectroscopy with an XGBoost algorithm for analyzing antioxidant properties in fruit juices. Three tyrosinase-immobilized electrode configurations were compared: screen-printed carbon electrodes with polyvinyl alcohol, glutaraldehyde, and human serum albumin crosslinkers. Chronoamperometry and cyclic voltammetry experiments were conducted to assess the redox kinetics and interfacial properties of the biosensors. The impedance spectra of the biosensors were recorded in juice samples and equivalent circuit modeling was performed to extract charge transfer resistance, double layer capacitance and other key parameters as input features for the XGBoost model. The model was trained on these EIS markers paired with reference antioxidant capacity assay values.]{.mark} The SPE/Tyr/HSA/GA sensor exhibited superior predictive accuracy, with a mean absolute error of 0.345, root mean squared error of 0.444, and an R-squared value of 0.980. Feature importance analysis revealed charge transfer resistance and double-layer capacitance as the most influential predictors. The XGBoost model outperformed multiple linear regression and random forest baselines, demonstrating high consistency with standard antioxidant assays. These findings highlight the potential of machine learning models combined with electrochemical impedance spectroscopy biosensors for rapid and accurate nutrient monitoring, providing substantial advancements in food analysis and health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Umapathi, S.M. Ghoreishian, S. Sonwal, G.M. Rani, Y.S. Huh, Coord. Chem. Rev. 453, 214305 (2022)

    Article  CAS  Google Scholar 

  2. Z. Taleat, A. Khoshroo, M. Mazloum-Ardakani, Microchim. Acta. 181, 865 (2014)

    Article  CAS  Google Scholar 

  3. S.D. Wijayanti, L. Tsvik, D. Haltrich, Foods. 12, 3355 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Schaeffer, P. Gasper, E. Garcia-Tamayo, R. Gasper, M. Adachi, J.P. Gaviria-Cardona, S. Montoya-Bedoya, A. Bhutani, A. Schiek, R. Goodall, R. Findeisen, R.D. Braatz, S. Engelke, J. Electrochem. Soc. 170, 060512 (2023)

    Article  CAS  Google Scholar 

  5. P.C. Wootton-Beard, L. Ryan, Food Res. Int. 44, 3135 (2011)

    Article  Google Scholar 

  6. C. Kaur, H.C. Kapoor, Int. J. Food Sci. Technol. 36, 703 (2001)

    CAS  Google Scholar 

  7. C. Sánchez-Moreno, L. Plaza, B. de Ancos, M.P. Cano, J. Sci. Food. Agric. 83, 430 (2003)

    Article  Google Scholar 

  8. A. Gawron-Gzella, M. Dudek-Makuch, I. Matlawska, Acta Biologica Cracov. Ser. Bot. 54, (2012)

  9. K.P. Suja, A. Jayalekshmy, C. Arumughan, J. Agric. Food Chem. 52, 912 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. S.B. Kedare, R.P. Singh, J. Food Sci. Technol. 48, 412 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D. Bandonienė, M. Murkovic, W. Pfannhauser, P. Venskutonis, D. Gruzdienė, Eur. Food Res. Technol. 214, 143 (2002)

    Article  Google Scholar 

  12. B. Özcan, M.K. Sezgintürk, Talanta. 225, 121985 (2021)

    Article  PubMed  Google Scholar 

  13. A.V. Bounegru, C. Apetrei, Int. J. Mol. Sci. 23, 12569 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Georgiev, M. Chochkova, I. Totseva, K. Seizova, E. Marinova, G. Ivanova, M. Ninova, H. Najdenski, T. Milkova, Med. Chem. Res. 22, 4173 (2013)

    Article  CAS  Google Scholar 

  15. Y. Wang, M.-M. Hao, Y. Sun, L.-F. Wang, H. Wang, Y.-J. Zhang, H.-Y. Li, P.-W. Zhuang, Z. Yang, Molecules. 23, 106 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. O. Taofiq, S.A. Heleno, R.C. Calhelha, M.J. Alves, L. Barros, M.F. Barreiro, A.M. González-Paramás, and I. C. F. R. Ferreira, Molecules 21, 1372 (2016)

  17. C.-H. Chen, H.-C. Chan, Y.-T. Chu, H.-Y. Ho, P.-Y. Chen, T.-H. Lee, C.-K. Lee, Molecules. 14, 2947 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. N. Korkmaz, S.O. Sener, S. Akkaya, M. Badem, R. Aliyazicioglu, M. Abudayyak, E. Oztas, U. Ozgen, Turkish J. Biochem. 44, 278 (2019)

    Article  CAS  Google Scholar 

  19. C. Gómez-Cordovés, B. Bartolomé, W. Vieira, V.M. Virador, J. Agric. Food Chem. 49, 1620 (2001)

    Article  PubMed  Google Scholar 

  20. J.J. García-Guzmán, D. López-Iglesias, L. Cubillana-Aguilera, C. Lete, S. Lupu, J.M. Palacios-Santander, and D. Bellido-Milla, Sensors 19, 66 (2019)

  21. P. Ebrahimi, S.-A. Shahidi, M. Bijad, Food Measure. 14, 3389 (2020)

    Article  Google Scholar 

  22. M. Tabrizi, S.-A. Shahidi, F. Chekin, A. Ghorbani-HasanSaraei, S.N. Raeisi, Top. Catal. 65, 726 (2022)

    Article  CAS  Google Scholar 

  23. Y. Xu, Y. Jiang, C. Li, Y. Chen, Y. Yang, J. Electroanal. Chem. 877, 114534 (2020)

    Article  CAS  Google Scholar 

  24. B. Wei, J. Xu, J. Pang, Z. Huang, J. Wu, Z. Cai, M. Yan, C. Sun, Mater. Today Commun. 32, 104047 (2022)

    Article  CAS  Google Scholar 

  25. T.H. Donato, M.G. Quiles, Adv. Comput. Intelligence: Int. J. (ACII). 5, 1 (2018)

    Google Scholar 

  26. S.M. Borstelmann, Acad. Radiol. 27, 13 (2020)

    Article  PubMed  Google Scholar 

  27. L. Zhang, Z. Shi, M.-M. Cheng, Y. Liu, J.-W. Bian, J.T. Zhou, G. Zheng, Z. Zeng, IEEE Trans. Pattern Anal. Mach. Intell. 43, 982 (2019)

    Article  Google Scholar 

  28. H. Shagholani, S.M. Ghoreishi, R. Rahmatolahzadeh, BioNanoScience 9, 883 (2019)

  29. P. Janeiro, A.M.O. Brett, Anal. Chim. Acta. 518, 109 (2004)

    Article  CAS  Google Scholar 

  30. A.H. Suroviec, K. Jones, G. Sarabia, J. Chem. Educ. 96, 366 (2019)

    Article  CAS  Google Scholar 

  31. M. Medvidović-Kosanović, M. Šeruga, L. Jakobek, I. Novak, Croat. Chem. Acta. 83, 197 (2010)

    Google Scholar 

  32. S. Datta, B. Kanjilal, P. Sarkar, J. Electrochem. Soc. 164, B118 (2017)

    Article  CAS  Google Scholar 

  33. E. Rodríguez-Sevilla, M.-T. Ramírez-Silva, M. Romero-Romo, P. Ibarra-Escutia, and M. Palomar-Pardavé, Sensors 14, 14423 (2014)

  34. L. Barelli, G. Bidini, D. Pelosi, E. Sisani, Energies. 14, 910 (2021)

    Article  CAS  Google Scholar 

  35. B. Tincu, I. Demetrescu, A. Avram, V. Tucureanu, A. Matei, O. Tutunaru, T. Burinaru, F. Comanescu, C. Voitincu, M. Avram, Diam. Relat. Mater. 98, 107510 (2019)

    Article  CAS  Google Scholar 

  36. F. Zouaoui, S. Bourouina-Bacha, M. Bourouina, A. Alcacer, J. Bausells, N. Jaffrezic-Renault, N. Zine, A. Errachid, Chemosensors. 8, 104 (2020)

    Article  CAS  Google Scholar 

  37. D. Andreescu, K.A. Kirk, F.H. Narouei, S. Andreescu, ChemElectroChem. 5, 2920 (2018)

    Article  CAS  Google Scholar 

  38. O.P. Rubino, R. Kowalsky, J. Swarbrick, Pharm. Res. 10, 1059 (1993)

    Article  CAS  PubMed  Google Scholar 

  39. C.-Y. Gan, L.-H. Cheng, E.-T. Phuah, P.-N. Chin, A.F. AlKarkhi, A.M. Easa, Food Hydrocoll. 23, 1398 (2009)

    Article  CAS  Google Scholar 

  40. S. Lu, L. Zhu, Q. Wang, Z. Liu, C. Tang, H. Sun, J. Yang, G. Qin, G. Sun, Q. Chen, Front. Chem. 8, 106 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Karki, J. Vollbrecht, A.J. Gillett, S.S. Xiao, Y. Yang, Z. Peng, N. Schopp, A.L. Dixon, S. Yoon, M. Schrock, Energy Environ. Sci. 13, 3679 (2020)

    Article  CAS  Google Scholar 

  42. P. Nandhakumar, C. Muñoz San Martín, B. Arévalo, S. Ding, M. Lunker, E. Vargas, O. Djassemi, S. Campuzano, J. Wang, ACS Sens. 8, 3892 (2023)

    Article  CAS  PubMed  Google Scholar 

  43. S. Roy, S. Sain, S. Wadhwa, A. Mathur, S. Dubey, S.S. Roy, Meas. Sci. Technol. 33, 014002 (2021)

    Article  Google Scholar 

  44. R.S. Sista, R. Ng, M. Nuffer, M. Basmajian, J. Coyne, J. Elderbroom, D. Hull, K. Kay, M. Krishnamurthy, C. Roberts, Diagnostics. 10, 21 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C. Karydas, M. Iatrou, D. Kouretas, A. Patouna, G. Iatrou, N. Lazos, S. Gewehr, X. Tseni, F. Tekos, Z. Zartaloudis, E. Mainos, S. Mourelatos, Antioxidants. 9, 156 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. B.H. Fontoura, E.C. Perin, S.D. Teixeira, V.A. de Lima, S.T. Carpes, J. King Saud Univ. - Sci. 35, 102792 (2023)

    Article  Google Scholar 

  47. M.L. Everitt, A. Tillery, M.G. David, N. Singh, A. Borison, I.M. White, Anal. Chim. Acta. 1146, 184 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijin Zhu.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Li, R. & Lu, A. Electrode impedance modeling based on XGboost algorithm for analyzing the antioxidant properties of juice. Food Measure (2024). https://doi.org/10.1007/s11694-024-02553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02553-3

Keywords

Navigation