Skip to main content
Log in

The finger millet (Eleusine coracana Gaertn) from the Tibet Plateau area of China: relationship between physicochemical, in vitro digestibility and rheology

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Given the significance and high demand for starch, this study aimed to explore unconventional starch sources by specifically focusing on the extraction and characterization of starch from finger millet (Eleusine coracana Gaertn) cultivated in Tibet, a unique high-altitude region in China. The physicochemical properties, structure, paste properties, and in vitro digestibility of the extracted finger millet starch (FMS) were analyzed, and the correlations among these properties were investigated. The results revealed that FMS particles exhibited a smooth and polygonal morphology. The amylose content of FMS was 29.17%, slightly higher than that of conventional corn starch (CS) and potato starch (PS). Moreover, FMS demonstrated lower in vitro digestibility, highlighting its potential as a functional ingredient in food formulations. In terms of paste properties, the pasting behavior of FMS was found to be intermediate between that of PS and CS. Rheological analysis further showed that FMS exhibited typical weak gel properties. Overall, this study provides valuable insights into the utilization of finger millet (Eleusine coracana Gaertn) as a novel starch source for both food and non-food industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. X.X. Wang, C.K. Reddy, B.J. Xu, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.03.121

    Article  PubMed  PubMed Central  Google Scholar 

  2. C.J. Chen, G.T. Li, Y. Hémar, H. Corke, F. Zhu, Carbohydr. Polym. (2023). https://doi.org/10.1016/j.carbpol.2022.120515

    Article  PubMed  Google Scholar 

  3. F. Jiang, Y.L. Zhu, W.X. Hu, M.Q. Li, J.J. Feng, X. Lv, X.Z. Yu, S.K. Du, Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2023.136697

    Article  PubMed  Google Scholar 

  4. G.T. Li, J.T. Chen, F. Zhu, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.126606

    Article  PubMed  PubMed Central  Google Scholar 

  5. G.D. Wang, C.X. Li, X. Zhang, Q.X. Wang, R.B. Cao, X.B. Liu, X. Yang, L.J. Sun, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.126626

    Article  PubMed  PubMed Central  Google Scholar 

  6. Z. Wu, X. Tang, S.M. Liu, S. Li, X.W. Zhao, Y.D. Wang, X.G. Wang, H. Li, Food Res. Int. (2023). https://doi.org/10.1016/j.foodres.2023.113136

    Article  PubMed  Google Scholar 

  7. C.Y. Deng, B.X. Wang, Y.Q. Jin, Y.Y. Yu, Y.Y. Zhang, S.X. Shi, Y.F. Wang, M.M. Zheng, Z.Y. Yu, Y.B. Zhou, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.126873

    Article  PubMed  Google Scholar 

  8. X.X. Liu, H.M. Liu, J. Li, Y.Y. Yan, X.D. Wang, Y.X. Ma, G.Y. Qin, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.04.044

    Article  Google Scholar 

  9. E. Šárka, A. Sinica, P. Smrčková, M. Sluková, Foods. (2023). https://doi.org/10.3390/foods12203794

    Article  PubMed  PubMed Central  Google Scholar 

  10. R.A. Opole, Afr. J. Food Agric. Nutr. Dev. (2019). https://doi.org/10.18697/ajfand.84.blfb1004

    Article  Google Scholar 

  11. J.L. Chen, L. Wang, P.F. Xiao, C.L. Li, H. Zhou, D.M. Liu, LWT Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2021.112145

    Article  Google Scholar 

  12. D. Chandra, S. Chandra, Pallavi, A.K. Sharma, Food Sci. Hum. Wellness. (2016). https://doi.org/10.1016/j.fshw.2016.05.004

  13. A. Kumar, M. Metwal, S. Kaur, A.K. Gupta, S. Puranik, S. Singh, M. Singh, S. Gupta, B.K. Babu, S. Sood, R. Yadav, Front. Plant Sci. (2016). https://doi.org/10.3389/fpls.2016.00934

    Article  PubMed  PubMed Central  Google Scholar 

  14. A. Pradhan, S.K. Nag, S.K. Patil, Curr. Sci. India 98(6), 763–765 (2010)

    Google Scholar 

  15. P.L. Kumari, S. Sumathi, Plant Food Hum. Nutr. (2002). https://doi.org/10.1023/a:1021805028738

    Article  Google Scholar 

  16. N. Gautam, S. Garg, S. Yadav, Starch/Stärke. (2021). https://doi.org/10.1002/star.202100156

    Article  Google Scholar 

  17. K.N. Jan, P.S. Panesar, S. Singh, J. Food Meas. Charact. (2017). https://doi.org/10.1007/s11694-017-9574-6

    Article  Google Scholar 

  18. C.C. Wang, Y. Wang, X.H. Liu, P. Cao, X.W. Hu, Y.H. Chen, S.B. Li, Y. Xiao, Y. Min, Starch/Stärke (2019). https://doi.org/10.1002/star.201800339

    Article  Google Scholar 

  19. S.A. Moore, Y. Ai, F.D. Chang, J.L. Jane, Carbohydr. Polym. (2015). https://doi.org/10.1016/j.carbpol.2014.09.014

    Article  PubMed  Google Scholar 

  20. X. Wang, L. Cheng, Z.F. Li, C.M. Li, X.F. Ban, Z.B. Gu, Y. Hong, Int. J. Biol. Macromol. (2022). https://doi.org/10.1016/j.ijbiomac.2022.10.092

    Article  PubMed  PubMed Central  Google Scholar 

  21. X.L. Wu, M.R. Luan, X.X. Yan, J.W. Zhang, X.X. Wu, Q. Zhang, Int. J. Biol. Macromol. (2022). https://doi.org/10.1016/j.ijbiomac.2023.127555

    Article  PubMed  PubMed Central  Google Scholar 

  22. A. Heydari, S.M.A. Razavi, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00581-3

    Article  Google Scholar 

  23. M.Z. Nie, C.H. Piao, A.X. Wang, H.H. Xi, Z.Y. Chen, Y. He, L.L. Wang, L.Y. Liu, Y.T. Huang, F.Z. Wang, L.T. Tong, Carbohydr. Polym. (2023). https://doi.org/10.1016/j.carbpol.2022.120458

    Article  PubMed  Google Scholar 

  24. X.Y. Tan, X.X. Li, L. Chen, F.W. Xie, L. Li, J.D. Huang, Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2017.01.029

    Article  PubMed  Google Scholar 

  25. D.P. Yao, J. Wu, Q.H. Luo, J.W. Li, W. Zhuang, G. Xiao, Q.Y. Deng, D.Y. Lei, B. Bai, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2019.125817

    Article  PubMed  Google Scholar 

  26. R.F. Tester, J. Karkalas, Starch/Stärke (2001). https://doi.org/10.1002/1521-379X(200110)53:10<513::AID-STAR513>3.0.CO;2-5

    Article  Google Scholar 

  27. J.J. Xie, Y. Hong, Z.B. Gu, L. Cheng, Z.F. Li, C.M. Li, Foods. (2023). https://doi.org/10.3390/foods12020387

    Article  PubMed  PubMed Central  Google Scholar 

  28. H.L. Wang, E. Wu, Q. Ma, H. Zhang, Y. Feng, P. Yang, J.F. Gao, B.L. Feng, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.126115

    Article  PubMed  PubMed Central  Google Scholar 

  29. T. Witt, M.J. Gidley, R.G. Gilbert, J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf101063m

    Article  PubMed  Google Scholar 

  30. S. Dhital, F.J. Warren, P.J. Butterworth, P.R. Ellis, M.J. Gidley, Crit. Rev. Food Sci. Nutr. (2016). https://doi.org/10.1080/10408398.2014.922043

    Article  Google Scholar 

  31. C.S. Guo, F.X. Han, S. Geng, Y.Z. Shi, H.J. Ma, B.G. Liu, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.124289

    Article  PubMed  PubMed Central  Google Scholar 

  32. J. Moza, H.S. Gujral, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.07.149

    Article  PubMed  Google Scholar 

  33. X.L. Ji, J. Chen, X.Y. Jin, J.X. Chen, Y.D. Ding, M.M. Shi, X.D. Guo, Y.Z. Yan, Starch/Stärke (2023). https://doi.org/10.1002/star.202200217

    Article  Google Scholar 

  34. J.M. Erickson, J.L. Carlson, M.L. Stewart, J.L. Slavin, Foods. (2018). https://doi.org/10.3390/foods7020018

    Article  PubMed  PubMed Central  Google Scholar 

  35. D. Ramdath, S. Renwick, A.M. Duncan, Can. J. Diabetes (2016). https://doi.org/10.1016/j.jcjd.2016.05.015

    Article  PubMed  Google Scholar 

  36. J. Cai, D. Zhang, F. Xie, Food Chem. (2024). https://doi.org/10.1016/J.foodchem.2023.137017

    Article  PubMed  Google Scholar 

  37. B.M. Prado, S. Kim, B.F. Özen, L.J. Mauer, J. Agric. Food Chem. (2005). https://doi.org/10.1021/jf0485537

    Article  PubMed  Google Scholar 

  38. X.L. Kong, W.D. Yang, Y.M. Zuo, M. Dawood, Z.R. He, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.126675

    Article  PubMed  Google Scholar 

  39. I. Reyes, C. Hernández-Jaimes, E.J. Vernon-Carter, L.A. Bello-Pérez, J. Álvarez-Ramírez, Starch/Stärke. (2021). https://doi.org/10.1002/star.202000237

    Article  Google Scholar 

  40. L.C. Gao, H.L. Wang, C.X. Wan, J.J. Leng, P.K. Wang, P. Yang, X.L. Gao, J.F. Gao, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.064

    Article  PubMed  PubMed Central  Google Scholar 

  41. N. Lindeboom, P.R. Chang, R.T. Tyler, Starch/Stärke. (2004). https://doi.org/10.1002/star.200300218

    Article  Google Scholar 

  42. N. Singh, J. Singh, L. Kaur, N.S. Sodhi, B.S. Gill, Food Chem. (2003). https://doi.org/10.1016/S0308-8146(02)00416-8

    Article  Google Scholar 

  43. X. Qi, R.F. Tester, Starch/Stärke. (2016). https://doi.org/10.1002/star.201500360

    Article  Google Scholar 

  44. K. Tao, C. Li, W. Yu, R.G. Gilbert, Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2018.09.078

    Article  PubMed  Google Scholar 

  45. X.Y. Bai, S.P. Yang, L. Zeng, W. Han, X. Ran, Int. J. Food Prop. (2021). https://doi.org/10.1080/10942912.2021.1901732

    Article  Google Scholar 

  46. Q. Chang, B.D. Zheng, Y. Zhang, H.L. Zeng, Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.07.050

    Article  PubMed  PubMed Central  Google Scholar 

  47. R.L. Natalia, M.M. Beatriz, E.R.G. Mario, Int. J. Biol. Macromol. (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.057

    Article  Google Scholar 

  48. M.Z. Zheng, X. Yu, S. Yang, H.M. Liu, M.H. Liu, S. Yaqoob, X.Y. Xu, J.S. Liu, Food Sci. Nutr. (2020). https://doi.org/10.1002/fsn3.1295

    Article  PubMed  PubMed Central  Google Scholar 

  49. J.Y. Guo, L.Y. Kong, B. Du, B.J. Xu, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.126

    Article  PubMed  Google Scholar 

  50. S. Hussain, A.A. Mohamed, M.S. Alamri, M.A. Ibraheem, A.A. Qasem, T. Alsulami, I.A. Ababtain, Molecules (2022). https://doi.org/10.3390/molecules27030701

    Article  PubMed  PubMed Central  Google Scholar 

  51. H. Staroszczyk, M. Fiedorowicz, J. Opalinska-Piskorz, R. Tylingo, LWT Food Sci. Technol. (2013). https://doi.org/10.1016/j.lwt.2013.01.009

    Article  Google Scholar 

  52. Y. Luo, Y.H. Xiao, M.Y. Shen, H.L. Wen, Y.M. Ren, X.Y. Han, J.H. Xie, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2019.105538

    Article  Google Scholar 

  53. L.C. Gao, B.F. Van, B. Lewille, G. Haesaert, M. Eeckhout, Food Hydrocoll. (2023). https://doi.org/10.1016/j.foodhyd.2022.108320

    Article  Google Scholar 

  54. G.T. Li, F. Zhu, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.039

    Article  PubMed  PubMed Central  Google Scholar 

  55. L. Chen, Y.Q. Tian, B.H. Sun, J.P. Wang, Q.Y. Tong, Z.Y. Jin, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.04.147

    Article  PubMed  PubMed Central  Google Scholar 

  56. C.J. Chen, W.Q. Fu, Q. Chang, B.D. Zheng, Y. Zhang, H.L. Zeng, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.01.214

    Article  PubMed  PubMed Central  Google Scholar 

  57. Z.B. Guo, J.Y. Wang, Z.Y. Li, B.D. Zheng, Y. Zhang, LWT Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2018.10.053

    Article  Google Scholar 

  58. K.F. Zhao, Z.Y. Jia, L.L. Hou, S.S. Xiao, H. Yang, W.P. Ding, Y.M. Wei, Y. Wu, X.D. Wang, Int. J. Biol. Macromol. (2023). https://doi.org/10.1016/j.ijbiomac.2023.127431

    Article  PubMed  PubMed Central  Google Scholar 

  59. S.P. Ma, P.L. Zhu, M.C. Wang, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2018.10.045

    Article  Google Scholar 

  60. S. Ismail, N. Mansor, Z. Majeed, Z. Man, Procedia Eng. (2016). https://doi.org/10.1016/j.proeng.2016.06.542

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing-review and editing, supervision: Xiuli Wu; methodology, data curation, writing-original draft preparation: Jianwen Zhang; data curation, software: Qing Zhang, Xiangxuan Yan; Validation, visualization: Xuexu Wu, Bingqian Zhang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiuli Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, J., Zhang, Q. et al. The finger millet (Eleusine coracana Gaertn) from the Tibet Plateau area of China: relationship between physicochemical, in vitro digestibility and rheology. Food Measure (2024). https://doi.org/10.1007/s11694-024-02531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02531-9

Keywords

Navigation