Skip to main content
Log in

Response surface methodology and optimization of hydrolysis conditions for the in vitro calcium-chelating and hypoglycemic activities of casein protein hydrolysates prepared using microbial proteases

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study represents the first investigation into food-derived peptides with anti-diabetic and calcium-chelating activities. This work aimed to assess the potential of casein, a promising protein source, for generating bioactive peptides with dual functionalities using combined enzymes, introducing an innovative exploration in research based on our current knowledge. Eleven proteases were employed to prepare casein hydrolysates. Protease A “Amano” 2SD demonstrated the highest degree of hydrolysis (DH = 24.69 ± 1.74), resulting in hydrolysates with enhanced calcium-chelating properties, and PROTIN SD-NY10 exhibited potent anti-diabetic activity with a degree of hydrolysis of (DH 13.84 ± 1.67). A combination of Protin SD-NY10 and Protease A “Amano” 2SD was selected to produce casein peptides with both calcium-chelating and anti-diabetic properties. Single factor experiments and response surface methodology (RSM) using a factorial design were employed to optimize hydrolysis conditions. The results of single factor optimization revealed that a protease ratio of 4:2, hydrolysis time of 6 h, protease concentration of 0.5%, substrate concentration of 10%, hydrolysis temperature of 50 ℃ to 55 ℃, pH values of 6.5 to 7.0, yielded maximum values for both functionalities. Hydrolysis time, pH, and enzyme concentration significantly influenced the production of calcium-chelating peptides. Using RSM, optimal conditions were determined: hydrolysis time 4.3 h, enzyme concentration 0.75%, and pH 7.0, with a calcium-chelation rate of 93.28%, which was quite similar to the predicted value. Ultrafiltration of hydrolysates revealed that the < 1KDa peptide fraction at a concentration of 10 mg/ml displayed higher calcium-chelation capacity (60.84%) and α-glucosidase inhibitory activity (38.54%). This study highlights the potential of casein to generate bifunctional hydrolysates with calcium-chelating and anti-diabetic activity, supporting its application as a novel, natural ingredient for functional food product development and a potential functional food supplement that can be used for medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.A. Aderinola, K.G. Duodu, BioFactors. 48(5), 972–992 (2022). https://doi.org/10.1002/biof.1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D.Y. Kim, J.S. Yoo, Y.A. Cho, H.S..Yoon, C.H. Kim, J. Dairy. Sci. Biotechnol. 39(1), 36–50 (2021)

    Article  Google Scholar 

  3. E. Bueno-Gavilá, A. Abellán, F. Girón-Rodríguez, J.M. Cayuela, E. Salazar, R. Gómez, L. Tejada, J. Dairy. Sci. 102(12), 10711–10723 (2019)

    Article  PubMed  Google Scholar 

  4. N. Sun, H. Wu, M. Du, Y. Tang, H. Liu, Y. Fu, B. Zhu, Trends Food Sci. Technol. 58, 140–148 (2016)

    Article  CAS  Google Scholar 

  5. L. Guo, P.A. Harnedy, B. Li, H. Hou, Z. Zhang, X. Zhao, R.J. FitzGerald, Trends Food Sci. Technol 37(2), 92–105. https://doi.org/10.1016/j.tifs.2014.02.007

  6. P. Koirala, M. Dahal, S. Rai, M. Dhakal, N.P. Nirmal, S. Maqsood, F. Al-Asmari, A. Buranasompob, Curr. Nutr. Rep. 12(2), 308–326 (2023). https://doi.org/10.1007/s13668-023-00472-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. W. Liao, S. Liu, X. Liu, S. Duan, S. Xiao, Z. Yang, Y. Cao, J. Miao, Food Funct. 10(12), 7724–7732 (2019). https://doi.org/10.1039/c9fo01383k

    Article  CAS  PubMed  Google Scholar 

  8. W.K. Jung, R. Karawita, S.J. Heo, B.J. Lee, S.K. Kim, Y.J. Jeon, Process. Biochem. 41, 2097–2100 (2006)

    Article  Google Scholar 

  9. X.L. Bao, M. Song, J. Zhang, Y. Chen, S.T. Guo, Chin. Chem. Lett. 18, 1115–1118 (2007)

    Article  CAS  Google Scholar 

  10. S.H. Lee, K.B. Song, J. Korean Soc. Appl. Biol. Chem. 52, 290–294 (2009)

    Article  CAS  Google Scholar 

  11. G. Huang, L. Ren, J. Jiang, Eur. Food Res. Tech. 232, 281–287 (2011)

    Article  CAS  Google Scholar 

  12. R.T. Recio, N.P. Guerra, A. Torrado, L.H. Skibsted, Int. Dairy. J. 88, 25–33 (2019). https://doi.org/10.1016/j.idairyj.2018.08.009

    Article  CAS  Google Scholar 

  13. S. Perego, E. Del Favero, P. De Luca, F. Dal Piaz, A. Fiorilli, A. Ferraretto, Food Funct. 6(6), 1796–1807 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. W. Huang, L. Lao, Y. Deng, Z. Li, W. Liao, S. Duan, S. Xiao, Y. Cao, J. Miao, Front. Nutr. 9, 960228 (2022). https://doi.org/10.3389/fnut.2022.960228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. B. Zhu, T. Hou, H. He, Int. J. Biol. Macromol. 154, 1347–1355 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.014

    Article  CAS  PubMed  Google Scholar 

  16. A. Ferraretto, A. Signorile, C. Gravaghi, A. Fiorilli, G. Tettamanti, J. Nutr. 131(6), 1655–1661 (2001). https://doi.org/10.1093/jn/131.6.1655

    Article  CAS  PubMed  Google Scholar 

  17. Q. Xu, H. Hong, J. Wu, X. Yan, Trends Food Sci. Technol. 86, 399–411 (2019). https://doi.org/10.1016/j.tifs.2019.02.050

    Article  CAS  Google Scholar 

  18. C. Acquah, C.K.O. Dzuvor, S. Tosh, D. Agyei, Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit. Rev. Food Sci. Nutr. 62(8), 2158–2171 (2020). https://doi.org/10.1080/10408398.2020.1851168

    Article  CAS  PubMed  Google Scholar 

  19. I.D. Federation, IDF Diabetes Atlas, 9th edn (2019)

  20. A. Karimi, M.H. Azizi, H. Ahmadi Gavlighi, Food Sci. Nutr. 8(5), 2395–2405 (2020). https://doi.org/10.1002/fsn3.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Wang, K. Du, L. Fang, C. Liu, W. Min, J. Liu, J. Food Biochem. 42(3), e12518 (2018). https://doi.org/10.1111/jfbc.12518

    Article  CAS  Google Scholar 

  22. S. Sekhon-Loodu, H.P.V. Rupasinghe, Front. nutr. 6,53(2019). https://doi.org/10.3389/fnut.2019.00053

  23. A.B. Nongonierma, R.J. FitzGerald, J. Food Biochem. 43(1) (2017). https://doi.org/10.1111/jfbc.12451. e12451

  24. L. Han, T. Xie, Q. Wu, Z. Hu, Y. Luo, F. Luo, Nutrients. 15(19), 4267–4267 (2023). https://doi.org/10.3390/nu15194267

    Article  CAS  Google Scholar 

  25. Q. Zhao, G. Wei, K. Li, S. Duan, R. Ye, A. Huang, LWT, 156, 113062 (2022) https://doi.org/10.1016/j.lwt.2021.113062

  26. P. Mudgil, H. Kamal, B. Priya Kilari, M.A.S. Mohd Salim, C.Y. Gan, S. Maqsood, Food Chem. 353, 129374 (2021). https://doi.org/10.1016/j.foodchem.2021.129374

    Article  CAS  PubMed  Google Scholar 

  27. P. Mudgil, H. Kamal, G.C. Yuen, S. Maqsood, Food Chem. 259, 46–54 (2018). https://doi.org/10.1016/j.foodchem.2018.03.082

    Article  CAS  PubMed  Google Scholar 

  28. S. Megrous, S. Al-Dalali, X. Zhao, C. Chen, Y. Cao, I. Bourouis, A. Mekkaoui, Z. Yang, Int. J. Pept. Res. Ther. 26, 2519–2527 (2020). https://doi.org/10.1007/s10989-020-10045-3

    Article  CAS  Google Scholar 

  29. P.M. Nielsen, D. Petersen, C. Dambmann, J. Food Sci. 66(5), 642–646 (2001). https://doi.org/10.1111/j.1365-2621.2001.tb04614.x

    Article  CAS  Google Scholar 

  30. J. Adler-Nissen, Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. J. Chem. Technol. Biotechnol. Biotechnol. 34(3), 215–222 (1984). https://doi.org/10.1002/jctb.280340311

    Article  Google Scholar 

  31. N. Xie, J. Huang, B. Li, J. Cheng, Z. Wang, J.F. Yin, X. Yan, Food Chem. 173, 210–217 (2015). https://doi.org/10.1016/j.foodchem.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  32. X. Wang, A. Gao, Y. Chen, X. Zhang, S. Li, Y. Chen, Food Chem. 229, 487–494 (2017). https://doi.org/10.1016/j.foodchem.2017.02.121

    Article  CAS  PubMed  Google Scholar 

  33. O.L. Tavano, J. Mol, Catal. B Enzym. 90, 1–11 (2013). https://doi.org/10.1016/j.molcatb.2013.01.011

    Article  CAS  Google Scholar 

  34. G. Hu, D. Wang, R. Su, M. Corazzin, X. Liu, X. Sun, L. Dou, C. Liu, D. Yao, L.S.J. Tian, L. Su, L. Zhao, Y. Jin, J. Food Meas. Charact. 16(6), 4934–4946 (2022). https://doi.org/10.1007/s11694-022-01580-2

    Article  Google Scholar 

  35. L. Mora, F. Toldrá, Curr. Opin. Food Sci. 49, 100973 (2023). https://doi.org/10.1016/j.cofs.2022.100973

    Article  CAS  Google Scholar 

  36. W. Lu, C. Dong, Food and Health. 4(4), 19–19 (2022). https://doi.org/10.53388/fh20221101019

    Article  Google Scholar 

  37. F. Rivero-Pino, F.J. Espejo-Carpio, E.M. Guadix, Foods. 9(8), 983 (2020). https://doi.org/10.3390/foods9080983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M.X. Ge, R.P. Chen, L. Zhang, Y.M. Wang, C.F. Chi, B. Wang, Mar. Drugs. 21(11), 579–579 (2023). https://doi.org/10.3390/md21110579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. Nie, Y. Liu, Z. Liu, J. Agric. Chem. Environ. 03(01), 11–15 (2014). https://doi.org/10.4236/jacen.2014.31b003

    Article  Google Scholar 

  40. R.O. Arise, J.J. Idi, I.M. Mic-Braimoh, E. Korode, R.N. Ahmed, O. Osemwegie, Heliyon. 5(5), e01634 (2019). https://doi.org/10.1016/j.heliyon.2019.e01634

    Article  PubMed  PubMed Central  Google Scholar 

  41. A. Connolly, C.O. Piggott, R.J. FitzGerald, Food Res. Int. 56, 100–107 (2014). https://doi.org/10.1016/j.foodres.2013.12.021

    Article  CAS  Google Scholar 

  42. A.A. Famuwagun, A.M. Alashi, S.O. Gbadamosi, K.A. Taiwo, D. Oyedele, O.C. Adebooye, R.E. Aluko, Foods. 10(5), 1112–1112 (2021). https://doi.org/10.3390/foods10051112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P.A. Harnedy, V. Parthsarathy, C.M. McLaughlin, M.B. O’Keeffe, P.J. Allsopp, E.M. McSorley, F.P.M. O’Harte, R.J. FitzGerald, Food Res. Int. 106, 598–606 (2018). https://doi.org/10.1016/j.foodres.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  44. F. Rivero-Pino, A.R. Pérez Gálvez, F.J. Espejo-Carpio, E.M. Guadix, Food Funct. 11(5), 4376–4386 (2020). https://doi.org/10.1039/d0fo00734j

    Article  CAS  PubMed  Google Scholar 

  45. D. Chen, X. Mu, H. Huang, R. Nie, Z. Liu, M. Zeng, J. Funct. Foods. 6, 575–584 (2014). https://doi.org/10.1016/j.jff.2013.12.001

    Article  CAS  Google Scholar 

  46. W. Wu, L. He, Y. Liang, L. Yue, W. Peng, G. Jin, M. Ma, Food Chem. 284, 80–89 (2019). https://doi.org/10.1016/j.foodchem.2019.01.103

    Article  CAS  PubMed  Google Scholar 

  47. N. Charoenphun, B. Cheirsilp, N. Sirinupong, W. Youravong, Eur. Food Res. Technol. 236(1), 57–63 (2013). https://doi.org/10.1007/s00217-012-1860-2

    Article  CAS  Google Scholar 

  48. G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu, I. Marc, Process. Biochem. 42(10), 1419–1428 (2007). https://doi.org/10.1016/j.procbio.2007.07.009

    Article  CAS  Google Scholar 

  49. Y. Guo, D. Pan, M. Tanokura, Food Chem. 114(1), 328–333 (2009). https://doi.org/10.1016/j.foodchem.2008.09.041

    Article  CAS  Google Scholar 

  50. Y. Zhang, F. Wu, Z. He, X. Fang, X. Liu, Foods. 12(2), 393–393 (2023). https://doi.org/10.3390/foods12020393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. X. Wang, J. Zhou, P.S. Tong, X.Y. Mao, J. Dairy. Sci. 94(6), 2731–2740 (2011). https://doi.org/10.3168/jds.2010-3900

    Article  CAS  PubMed  Google Scholar 

  52. C. Xixi, Z. Lina, W. Shaoyun, R. Pingfan, Food Funct. 6(3), 816–823 (2015). https://doi.org/10.1039/c4fo00811a

    Article  PubMed  Google Scholar 

  53. G. Shu, Q. Zhang, H. Chen, H. Wan, H. Li, Acta Univ. Cibiniensis, Ser. E: Food Technol.19(2), 65–74 (2015) https://doi.org/10.1515/aucft-2015-0015

  54. M.M. Mullally, H. Meisel, R.J. FitzGerald, FEBS Lett. 402(2–3), 99–101 (1997). https://doi.org/10.1016/S0014-5793(96)01503-7

    Article  CAS  PubMed  Google Scholar 

  55. P. Garcia-Mora, J. Frias, E. Peñas, H. Zieliński, J.A. Giménez-Bastida, W. Wiczkowski, D. Zielińska, C. Martínez-Villaluenga, J. Funct. Foods. 18, 319–332 (2015). https://doi.org/10.1016/j.jff.2015.07.010

    Article  CAS  Google Scholar 

  56. M. Wang, Z. Zheng, C. Liu, H. Sun, Food Funct. 11(10), 8724–8734 (2020). https://doi.org/10.1039/d0fo01708f

    Article  CAS  PubMed  Google Scholar 

  57. Y. Zhang, Y. Chen, X. Liu, W. Wang, J. Wang, X. Li, S. Sun, Foods. 12(13), 2534–2534 (2023). https://doi.org/10.3390/foods12132534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. H. Zhang, Z. Zhang, D. He, S. Li, Y. Xu, Molecules. 27(3), 1079 (2022). https://doi.org/10.3390/molecules27031079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Y. Deng, C.I. Butré, P.A. Wierenga, Int. Dairy. J. 86, 39–48 (2018). https://doi.org/10.1016/j.idairyj.2018.06.018

    Article  CAS  Google Scholar 

  60. M.M. Vorob’ev, S.V. Vitt, V.M. Belikov, Food/Nahrung. 31(4), 331–340 (1987). https://doi.org/10.1002/food.19870310422

    Article  Google Scholar 

  61. H. Ke, R. Ma, X. Liu, Y. Xie, J. Chen, LWT. 168, 113947 (2022). https://doi.org/10.1016/j.lwt.2022.113947

    Article  CAS  Google Scholar 

  62. M. Goudarzi, A. Madadlou, M.E. Mousavi, Z. Emam-Djomeh, Dairy. Sci. Technol. 92(6), 641–653 (2012). https://doi.org/10.1007/s13594-012-0081-6

    Article  CAS  Google Scholar 

  63. W. Huang, Y. Lan, W. Liao, L. Lin, L. Guo, H. Xu, J. Xue, B. Guo, Y. Cao, J. Miao, LWT. 149, 112035–112035 (2021). https://doi.org/10.1016/j.lwt.2021.112035

    Article  CAS  Google Scholar 

  64. Z. Zhang, F. Zhou, X. Liu, M. Zhao, Food Chem. 258, 269–277 (2018). https://doi.org/10.1016/j.foodchem.2018.03.030

    Article  CAS  PubMed  Google Scholar 

  65. Y. Zhong, Y. Zhou, M. Ma, Y. Zhao, X. Xiang, C. Shu, B. Zheng, Foods. 12(18), 3403 (2023). https://doi.org/10.3390/foods12183403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Y. Ji, G. Zhang, Y. Zhang, Adv. J. Food Sci. Technol. 11(1), 1–6 (2016). https://doi.org/10.19026/ajfst.11.2346

    Article  CAS  Google Scholar 

  67. R. Gao, Y. Shen, W. Shu, F. Bai, W. Jin, J. Wang, Y. Li, J. Food Qual.2020,1–12 (2020) https://doi.org/10.1155/2020/9698134

  68. M.F. Sbroggio, M.S. Montilha, V.R.G. de Figueiredo, S.R. Georgetti, L.E. Kurozawa, Food Sci. Technol. 36(2), 375–381 (2016). https://doi.org/10.1590/1678-457X.000216

    Article  Google Scholar 

  69. J. Luo, Z. Zhou, X. Yao, Y. Fu, LWT. 134, 110209 (2020). https://doi.org/10.1016/j.lwt.2020.110209

    Article  CAS  Google Scholar 

  70. J. Luo, X. Yao, O.P. Soladoye, Y. Zhang, Y. Fu, LWT. 155, 112978 (2022). https://doi.org/10.1016/j.lwt.2021.112978

    Article  CAS  Google Scholar 

  71. W.Q. AL-Bukhaiti, S. Al-Dalali, A. Noman, S. Qiu, S.M. Abed, S.-X. Qiu, Foods. 11(20), 3303 (2022). https://doi.org/10.3390/foods11203303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Aziz, F. Husson, S. Kermasha, Int. J. Food Sci. 2015, 1–10. (2015). https://doi.org/10.1155/2015/594238

  73. P.V. Suresh, LWT. 156, 113018(2022) https://doi.org/10.1016/j.lwt.2021.113018

  74. J. Ren, M. Zhao, J. Shi, J. Wang, Y. Jiang, C. Cui, Y. Kakuda, S.J. Xue, LWT - Food Science and Technology. 41(9), 1624–1632 (2008). https://doi.org/10.1016/j.lwt.2007.11.005

    Article  CAS  Google Scholar 

  75. M.Y. Abduh, D.A. Prawitasari, U.A. Fitrian, M. Firmansyah, J. Appl. Biol. Biotechnol. 11(2), 151–157 (2023). https://doi.org/10.7324/JABB.2023.110215

    Article  CAS  Google Scholar 

  76. N. Tang, L.H. Skibsted, J. Agric, Food Chem. 64(21), 4376–4389 (2016). https://doi.org/10.1021/acs.jafc.6b01534

    Article  CAS  Google Scholar 

  77. Y. Jiang, J. Li, H. Zhao, R. Zhao, Y. Xu, X. Lyu, Int. J. Food Sci. Technol. 56(1), 166–177 (2021). https://doi.org/10.1111/ijfs.14616

    Article  CAS  Google Scholar 

  78. H. Hong, H. Fan, M. Chalamaiah, J. Wu, Food Chem. 301, 125222 (2019). https://doi.org/10.1016/j.foodchem.2019.125222

    Article  CAS  PubMed  Google Scholar 

  79. Y. Zhang, E.T. Lee, R.B. Devereux, J. Yeh, L.G. Best, R.R. Fabsitz, B.V. Howard, Hypertension. 47(3), 410–414 (2006). https://doi.org/10.1161/01.hyp.0000205119.19804.08

    Article  CAS  PubMed  Google Scholar 

  80. M.G. Kang, S.H. Yi, J.S. Lee, Mycobiology. 41(3), 149–154 (2013). https://doi.org/10.5941/myco.2013.41.3.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. A.H. Ramadhan, T. Nawas, X. Zhang, W.M. Pembe, W. Xia, Y. Xu, Int. J. Food Prop. 20(sup3), S3360–S3372 (2017). https://doi.org/10.1080/10942912.2017.1354885

    Article  CAS  Google Scholar 

  82. M.A. Ibrahim, M.J. Bester, A.W. Neitz, A.R. Gaspar, Chem. Biol. Drug Des. 91(2), 370–379 (2018). https://doi.org/10.1111/cbdd.13105

    Article  CAS  PubMed  Google Scholar 

  83. Y. Lv, X.L. Bao, B.C. Yang, C.G. Ren, S.T. Guo, J. Food Sci. 73(7), H168–H173 (2008). https://doi.org/10.1111/j.1750-3841.2008.00873.x

    Article  CAS  PubMed  Google Scholar 

  84. X. Bao, X. Yuan, G. Feng, M. Zhang, S. Ma, J. Sci. Food Agric. 101(2), 794–804 (2021). https://doi.org/10.1002/jsfa.10800

    Article  CAS  PubMed  Google Scholar 

  85. S. Budseekoad, C.T. Yupanqui, N. Sirinupong, A.M. Alashi, R.E. Aluko, W. Youravong, J. Funct. Foods. 49, 333–341 (2018). https://doi.org/10.1016/j.jff.2018.07.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Key Research and Development Program of China (2017YFE0131800) and the National Natural Science Foundation of China (No. 32272296).

Author information

Authors and Affiliations

Authors

Contributions

Sarah Megrous, Xiao Zhao, and Sam Al-Dalali: Conceptualization, Methodology, Software, Writing and revising manuscript. Zhennai Yang: Supervision, Resources, Project administration.

Corresponding author

Correspondence to Zhennai Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megrous, S., Zhao, X., Al-Dalali, S. et al. Response surface methodology and optimization of hydrolysis conditions for the in vitro calcium-chelating and hypoglycemic activities of casein protein hydrolysates prepared using microbial proteases. Food Measure 18, 3069–3084 (2024). https://doi.org/10.1007/s11694-024-02388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02388-y

Keywords

Navigation