Skip to main content
Log in

Levels of monochloropropane-diol and glycidyl esters in heated palm oil and assessment of their risk in the animal model

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

3-monochloropropane-1,2-diol esters (3-MCPD-Es), 2-monochloropropane-1,3-diol esters (2-MCPD-Es), and glycidyl esters (G-Es) are heat-induced pollutants that formed during the vegetable oil refining process. The current study investigated the effects of heated palm oil containing measured amounts of MCPD-Es and G-Es on rats' lipid profile, liver and kidney functions. Using gas chromatography-mass spectrometry, 3-MCPD-Es, 2-MCPD-Es, and G-Es concentrations in heated palm oil were determined at various intervals. Forty healthy male Sprague–Dawley rats (200–250 g) were divided into four groups (I to IV). Group I was fed a regular diet (negative control). Groups II, III and IV were fed a regular diet fortified with 15% (w/w) of unheated palm oil, palm oil heated at 200 °C for 15 min, and palm oil heated at 200 °C for 30 min, respectively, for 8 weeks. The rats were fed an ordinary diet with nutritional pellets and given water ad libitum. The animal groups were sacrificed, blood samples taken, and the tissues stained with hematoxylin and eosin. The results showed that 3-MCPD-Es, 2-MCPD-Es and G-Es in heated palm oil were 5.4, 3.3 and 2.1 mg kg−1 oil, respectively, and formed at the mildest tested conditions (200 °C, 30 min). Palm oil heated at 200 °C for 30 min increased liver enzymes (alanine transaminase, aspartate transaminase, and alkaline phosphatase), serum kidney functions (uric acid, urea, and creatinine) and lipid profile (plasma cholesterol, plasma triglycerides, LDL-cholesterol, and VLDL-cholesterol) while decreasing HDL-cholesterol compared to rats fed a regular diet. Histological changes occurred in the liver and kidney of rats. It could be concluded that levels of MCPD-Es and G-Es in heated palm oil may pose a potential risk to the health of consumers and need to be constantly monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The author confirms that the data supporting this study are available within the article.

References

  1. M. Aznar, J. Gomez-Estaca, D. Velez, V. Devesa, C. Nerín, Migrants determination and bioaccessibility study of ethyl lauroylarginate (LAE) from a new antimicrobial food packaging material. Food Chem. Toxicol. 56, 363–370 (2013). https://doi.org/10.1016/j.fct.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  2. R.H. Stadler, Monochloropropane-1,2-diol esters (MCPDEs) and glycidyl esters (GEs): an update. Curr. Opin. Food Sci. 6, 12–18 (2015)

    Article  Google Scholar 

  3. J. Kuhlmann, Determination of bound 2,3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur. J. Lipid Sci. Technol. 113, 335–344 (2011)

    Article  CAS  Google Scholar 

  4. X. Liu, S. Zhou, Y. Jiang, X. Xu, Optimization of deodorization design for four different kinds of vegetable oil in industrial trial to reduce thermal deterioration of product. J. Am. Oil ChemSoc 98, 475–483 (2021). https://doi.org/10.1002/aocs.12453

    Article  CAS  Google Scholar 

  5. Z. Zelinková, B. Svejkovská, J. Velíšek, M. Doležal, Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit. Contam. 23, 1290–1298 (2006)

    Article  PubMed  Google Scholar 

  6. M. Küsters, U. Bimber, S. Reeser, R. Gallitzendörfer, M. Gerhartz, Simultaneous determination and differentiation of glycidyl esters and 3-Monochloropropane-1,2-diol (MCPD) esters in different foodstuffs by GC-MS. J. Agric. Food Chem. 59, 6263–6270 (2011)

    Article  PubMed  Google Scholar 

  7. E. Barocelli, A. Corradi, A. Mutti, P.G. Petronini, Comparison between 3-MCPD and its palmitic esters in a 90-day toxicological study. EFSA Support. Publ. 8(9), 131 (2011). https://doi.org/10.2903/sp.efsa.2011.EN-187

    Article  Google Scholar 

  8. J. Sun, S. Bai, W. Bai, F. Zou, L. Zhang, Z. Su, Q. Zhang, S. Ou, Y. Huang, Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells. J. Agric. Food Chem. 61, 9955–9960 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. R. El Ramy, M. OuldElhkim, S. Lezmi, J.M. Poul, Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and beta-chlorolactic acid, using the single cell gel/comet assay. Food Chem. Toxicol. 45, 41–48 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. R. El Ramy, M. Ould Elhkim, S. Lezmi, J.M. Poul, Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and b-chloroacetic acid, using the single cell gel/comet assay. Food Chem. Toxicol. 45, 41–48 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. P. Olsen, Chloropropanols, in Toxicological Evaluation of Certain Food Additives and Contaminants. Joint Expert Committee in Food Additives, World Health Organization, Geneva, Switzerland (41st meeting), vol. 32, pp. 267–285 (1993)

  12. B.S. Lynch, D.W. Bryant, G.J. Hook, E.R. Nestmann, I.C. Munro, Carcinogenecity of monochloro-1,2-propanediol (alpha-chlorohydrin, 3-MCPD). Int. J. Toxicol. 17, 47–76 (1998)

    Article  CAS  Google Scholar 

  13. (EFSA). European Food Safety Authority, EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority (2016)

  14. JECFA (Joint FAO/WHO Expert Committee on Food Additives), Evaluation of certain contaminants in food - Eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 74–106. http://www.who.int/foodsafety/publications/technical-report-series-1002/en/ (2017)

  15. W.S. Cho, B.S. Han, K.T. Nam, K. Park, M. Choi, S.H. Kim, J. Jeong, D.D. Jang, Carcinogenicity study of 3-monochloropropane-1,2-diol in Sprague-Dawley rats. Food Chem. Toxicol. 46, 3172–3177 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. JECFA (World Health Organization: Joint FAO/WHO Expert Committee on Food Additives)

  17. BfR (Bundesinstitut für Risikobewertung, DE), Possible health risks due to high concentrations of 3-MCPD and glycidyl fatty acid esters in certain foods. BfR Opinion No 020/2020 issued 20 April 2020, BfR, pp. 1 of 52 (2020)

  18. IARC (International Agency for Research on Cancer). Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 77 Some Industrial Chemicals. Summary of Data Reported and Evaluation, Lyon, France, pp. 469–486, http://monographs.iarc.fr/ENG/Monographs/vol77/ (2000)

  19. IARC (International Agency for Research on Cancer). Some Chemicals Present in Industrialand Consumer Products, Food and Drinking-Water. Volume 101. Lyon, France, pp. 349–374. http://monographs.iarc.fr/ENG/Monographs/vol101/ (2012)

  20. [FAO] Joint Food and Agriculture Organization/[WHO] World Health Organization. 2016. 83rd Expert Committee on food additives: summary and conclusions, Rome, Italy. http://www.fao.org/3/abq821e.pdf. Accessed Nov 2016

  21. EFSA, Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA J. 16(1), e05083 (2018)

    Google Scholar 

  22. Z. Zelinková, M. Doležal, J. Velíšek, Occurrence of 3-chloropropane-1,2-diol fatty acid esters in infant and baby foods. Eur. Food Res. Technol. 228, 571–578 (2008)

    Article  Google Scholar 

  23. EFSA Panel on Contaminants in the Food Chain (CONTAM), Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 14(5), 4426 (2016)

    Article  Google Scholar 

  24. M. Liu, J. Liu, Y. Wu, B. Gao, P. Wu, H. Shi, X. Sun, H. Huang, T.T. Wang, L.L. Yu, Preparation of five 3-MCPD fatty acid esters and the effects of their chemical structures on acute oral toxicity in Swiss mice. J. Sci. Food Agric. (2016). https://doi.org/10.1002/jsfa.7805

    Article  PubMed  PubMed Central  Google Scholar 

  25. EC (European Commission) "COMMISSION REGULATION (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives", 2011

  26. D.U. Owu, E.E. Osim, P.E. Ebong, Serum liver enzymes profile of Wistar rats following chronic consumption of fresh or oxidized palm oil diets. Acta Trop. 69, 65–73 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. A. Ermacora, K. Hrncirik, Evaluation of an improved indirect method for the analysis of 3-MCPD esters based on acid transesterification. J. Am. Oil ChemSoc. 89, 211–217 (2012)

    Article  CAS  Google Scholar 

  28. H. Karl, S. Merkle, J. Kuhlmann, J. Fritsche, Development of analytical methods for the determination of free and ester bound 2-, 3- MCPD, and esterified glycidol in fishery products. Eur. J. Lipid Sci. Technol. 118, 406–417 (2016)

    Article  CAS  Google Scholar 

  29. M.A. Hussein, N.A. Gobba, CAMBA, a new synthesized and promising protector against STZ-induced diabetic complications in rats. Med. Chem. 3, 286–293 (2013)

    Article  Google Scholar 

  30. P. Fossati, L. Prencipe, Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. ClinChem 28, 2077–2080 (1982). https://doi.org/10.1093/clinchem/28.10.2077

    Article  CAS  Google Scholar 

  31. W.T. Fridewald, R.I. Leve, D.S. Fredrickson, Estimation of concentration of low density lipoprotein without the use of preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972)

    Article  Google Scholar 

  32. S. Reitman, S. Frankel, A colorimetric method for the determination of serum glutamicoxaloacetic and glutamic pyruvic transaminases. Am J Clin Path 22l(5/6), 56 (1957)

    Article  Google Scholar 

  33. N.M. Tietz, Textbook of Clinical Chemistry, vol. 64 (Sunders Co., Try, Philadelphia, W.B, 1983), pp.1312–1316

    Google Scholar 

  34. A. Tabacco, F. Meiattini, E. Moda, Tarlip, Simplified enzymitic colorimetric serum urea nitrogen determination. Clin. Chem. 25, 336–337 (1979)

    Article  CAS  PubMed  Google Scholar 

  35. H.A.E.H. El Gizawy, M.A. Hussein, E. Abdel-Sattar, Biological activities, isolated compounds and HPLC profile of Verbascumnubicum. Pharm. Biol. 57, 485–497 (2019). https://doi.org/10.1080/13880209.2019.1643378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R.G.D. Steel, J.H. Torrie, D.A. Dicky, Principles and Procedures of Statistics: ABiometrical Approach, 3rd edn. (McGraw Hill, Inc. Book Co., New York, 1997), pp.352–358

    Google Scholar 

  37. A.K.K. Rahn, V.A. Yaylayan, What do we know about the molecular mechanism of 3-MCPD ester formation? Eur. J. Lipid Sci. Technol. 113, 323–329 (2011). https://doi.org/10.1002/ejlt.201000310

    Article  CAS  Google Scholar 

  38. M. Shimizu, P. Weitkamp, K. Vosmann, B. Matthäus, Infuence of chloride and glycidyl-ester on the generation of 3-MCPDand glycidyl-esters. Eur. J. Lipid Sci. Technol. 115, 735–739 (2013). https://doi.org/10.1002/ejlt.201200310

    Article  CAS  Google Scholar 

  39. F. Destaillats, B.D. Craf, M. Dubois, K. Nagy, Glycidyl esters in refned palm (Elaeisguineensis) oil and related fractions. Part I: formation mechanism. Food Chem. 131, 1391–1398 (2012). https://doi.org/10.1016/j.foodchem.2011.10.006

    Article  CAS  Google Scholar 

  40. A. Freudenstein, J. Weking, B. Matthäus, Infuence of precursors on the formation of 3-MCPD and glycidyl esters in a model oil under simulated deodorization conditions. Eur. J. Lipid Sci. Technol. 115, 286–294 (2013). https://doi.org/10.1002/ejlt.201200226

    Article  CAS  Google Scholar 

  41. O.I. Mba, M.J. Dumont, M. Ngadi, Palm oil: processing, characterization and utilization in the food industry—a review. Food Biosci. 10, 26–41 (2015)

    Article  CAS  Google Scholar 

  42. J. Velisek, P. Calta, C. Crews, S. Hasnip, D. Marek, 3-Chloropropane-1,2-diol in models simulating processed foods: precursors and agents causing its decomposition. Czech J. Food Sci. 21(5), 153–161 (2003)

    Article  CAS  Google Scholar 

  43. K.M. Goh, Y.H. Wong, C.P. Tan, K.L. Nyam, A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr. Res. Food Sci. 4, 460–469 (2021). https://doi.org/10.1016/j.crfs.2021.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Šmidrkal, M. Tesařová, I. Hrádková, M. Berčíková, A. Adamčíková, V. Filip, Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining. Food Chem. 211, 124–129 (2016)

    Article  PubMed  Google Scholar 

  45. Y. Ji, D. Lan, W. Wang, K.M. Goh, C.P. Tan, Y. Wang, The formation of 3-monochloropropanediol esters and glycidyl esters during heat-induced processing using an olive-based edible oil. Foods 11, 4073 (2022). https://doi.org/10.3390/foods11244073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K.M.M. Hasan, N. Tamanna, M.A. Haque, Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Sci. Hum. Wellness 7(1), 77–82 (2018)

    Article  Google Scholar 

  47. X. Li, X. Yu, D. Sun et al., Effects of polar compounds generated from the deep-frying process of palm oil on lipid metabolism and glucose tolerance in Kunming mice. J. Agric. Food Chem. 65(1), 208–215 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. M. Washington, G. Van Hoosier, Clinical biochemistry and hematology. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents (2012), pp. 57–116.

  49. Famurewa, O. Nwankwo, A. Folawiyo, E.C. Igwe, M.A. Epete, O.G. Ufebe, Repeatedly heated palm kernel oil induces hyperlipidemia, atherogenic indices and hepatorenal toxicity in rats: beneficial role of virgin coconut oil supplementation. ActaScientiarumPolonorumTechnologiaAlimentaria 16(4), 451–460 (2017)

    CAS  Google Scholar 

  50. C.-Y. Ng, X.-F. Leong, N. Masbah, S.K. Adam, Y. Kamisah, K. Jaarin, Heated vegetable oils and cardiovascular disease risk factors. Vascul. Pharmacol. 61(1), 1–9 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. W. Jia, P. Zhuang, Q. Wang, X. Wan, L. Mao, X. Chen, H. Miao, D. Chen, Y. Ren, Y. Zhang, Urinary non-targeted toxicokinetics and metabolic fngerprinting of exposure to 3-monochloropropane-1,2-diol and glycidol from refned edible oils. Food Res. Int. 152(December 2021), 110898 (2022)

    Article  CAS  PubMed  Google Scholar 

  52. K. Abraham, K.E. Appel, E. Berger-Preiss, E. Apel, S. Gerling, H. Mielke, O. Creutzenberg, A. Lampen, Relative oral bioavailability of 3-MCPD from 3- MCPD fatty acid esters in rats. Arch. Toxicol. 87(4), 649–659 (2013). https://doi.org/10.1007/s00204-012-0970-8

    Article  CAS  PubMed  Google Scholar 

  53. A.R. Jones, D.H. Milton, C. Murcott, The oxidative metabolism of α-chlorohydrin in the male rat and the formation of spermatocoeles. Xenobiotica 8(9), 573–582 (1978). https://doi.org/10.3109/00498257809061257

    Article  CAS  PubMed  Google Scholar 

  54. M. Liu, B. Gao, F. Qin, P. Wu, H. Shi et al., Acute oral toxicity of 3-MCPD mono- and di-palmitic esters in Swiss mice and their cytotoxicity in NRK-52E rat kidney cells. Food Chem. Toxicol. 50, 3785–3791 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. M. Liu, J. Liu, Y. Wu, B. Gao, P. Wu et al., Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice. J. Sci. Food Agric. 97, 841–848 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. W.S. Cho, B.S. Han, K.T. Nam, K. Park, M. Choi, S.H. Kim, J. Jeong, D.D. Jang, Carcinogenicity study of 3-monochloropropane-1,2-diol in Sprague-Dawley rats. Food Chem. Toxicol. 46(9), 3172–3177 (2008). https://doi.org/10.1016/j.fct.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  57. EFSA, Risks for human health related to the presence of 3-and 2- monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 14(5), e04426 (2016)

    Google Scholar 

  58. F. Frenzel, A. Oberemm, A. Lampen, A. Braeuning, Proteomic effects of repeateddose oral exposure to 2-monochloropropanediol and its dipalmitate in rat testes. Food Chem. Toxicol. 116(Pt B), 354–359 (2018). https://doi.org/10.1016/j.fct.2018.04.055

    Article  CAS  PubMed  Google Scholar 

  59. G. Dereje, P. Anandakumar, M. Gizaw, Effect of reused palm oil on serum lipid profile in experimental rats. Adv. J. Pharm Life Sci. Res. 7(2), 1–4 (2019)

    Google Scholar 

  60. R. Liu, M. Cheng, K.S.D. Kothapalli, Z. Wang, E. Mendralla, H.G. Park, R.C. Block, X. Wang, J.T. Brenna, Glycerol derived process contaminants in refined coconut oil induce cholesterol synthesis in HepG2 cells. Food Chem. Toxicol. 127, 135–142 (2019). https://doi.org/10.1016/j.fct.2019.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. K. Jaarin, C.P. Yeen, N. Masbah, Consumption of heated palm oil and its effect on kidney in rats. Pak. J. Nutr. 15, 148–154 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research work through the project number IFP22UQU4430043DSR067. The authors would like to thank the Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI), Detmold, Germany, for helping during the assessment of 3-MCPD.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK: Methodology, Investigation, Applications, Writing-review and editing. AEE-H: Formal analysis, Writing-review and editing. RME: Formal analysis, Writing-review and editing. MAA-S: Data curation, Methodology, Formal analysis, Investigation. MFR: Conceptualization, Supervision, Writing-review and editing. HNE-DAE-KE: Formal analysis, Conceptualization, Supervision, Writing-review and editing. MASK: Formal analysis, Conceptualization, Supervision, Writing-review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed Fawzy Ramadan.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent for publication

All authors consent for the manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandiil, A., El-Hadary, A.E., Elsanhoty, R.M. et al. Levels of monochloropropane-diol and glycidyl esters in heated palm oil and assessment of their risk in the animal model. Food Measure 18, 2639–2650 (2024). https://doi.org/10.1007/s11694-023-02343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02343-3

Keywords

Navigation