Skip to main content
Log in

Effect of extraction temperature of taro mucilage on physicochemical and rheological properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Mucilage, which is the main component of the taro plant, and is known to have significant health benefits, has become a versatile ingredient in the food industry due to its richness in fiber and protein and its unique rheological properties. Taro mucilage has a rich content of various bioactive chemicals such as saponins, tannins, flavonoids, and phenolic acids along with being viscous and water-soluble. The effective use of taro mucilage is only possible if it is efficiently extracted, which has created a pre-treatment or additional treatment requirement. Temperature application plays a crucial role in taro mucilage extraction and significantly affects its composition, yield, and quality. This present study focuses on the effects of different temperatures (20, 40, 60 and 80 °C) applied during taro mucilage extraction on physicochemical and rheological properties. The water-holding capacity of taro mucilage samples decreased significantly (p < 0.05) from 0.48 to 0.12% with a rise in temperature while there is no significant linear decrease or increase in oil-holding capacity and solubility values. Emulsifying activity and emulsion stability parameters significantly improved by increasing temperature (p < 0.05). The zeta potential ranged from − 10.49 to − 24.09 so stable emulsions were formed. At higher temperatures, lighter mucilage was obtained for both the powder and aqueous form of mucilage. The samples showed pseudoplastic behavior and the temperature increased the K value up to 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. D. Bekele, M. Boru, Evaluation of released taro (Colocasia esculenta L.) varieties at Assosa District Western Ethiopia. Ecol. Evol. Biol. 5(3), 43 (2020). https://doi.org/10.11648/j.eeb.20200503.12

    Article  Google Scholar 

  2. H. Lin, A.S. Huang, Chemical composition and some physical properties of a water-soluble gum in taro (Colocasia esculenta). Food Chem. 48(4), 403–409 (1993). https://doi.org/10.1016/0308-8146(93)90325-A

    Article  CAS  Google Scholar 

  3. M.M. Tosif, A. Najda, J. Klepacka, A. Bains, P. Chawla, A. Kumar, M. Sharma, K. Sridhar, S.P. Gautam, R. Kaushik, A concise review on taro mucilage: extraction techniques, chemical composition, characterization, applications, and health attributes. Polymers (2022). https://doi.org/10.3390/polym14061163

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. Arıcı, G. Özülkü, B. Kahraman, R. Metin Yıldırım, Ö.S. Toker, The effect of taro-wheat flour and taro-gluten free flour on cake batters and quality. J. Food Meas. Charact. 15(1), 531–540 (2021). https://doi.org/10.1007/s11694-020-00656-1

    Article  Google Scholar 

  5. J. de Miamoto, J. Pereira, S.K.V. Bertolucci, Obtaining and characterization of freeze-dried whole taro root (Colocasia esculenta), mucilage and residue as functional food. Nutrição Brasil 17(1), 9–18 (2018). https://doi.org/10.33233/nb.v17i1.716

    Article  Google Scholar 

  6. P. Ribeiro Pereira, B. de Aquino, É. Mattos, A.C. Nitzsche Teixeira Fernandes Corrêa, M. Afonso Vericimo, V. Margaret Flosi Paschoalin, Anticancer and immunomodulatory benefits of Taro (Colocasia esculenta) corms, an underexploited tuber crop. Int. J. Mol. Sci. 22(1), 265 (2020). https://doi.org/10.3390/ijms22010265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L.A. Andrade, C.A. Nunes, J. Pereira, Physical and chemical analysis in crude taro mucilage obtained by simple extraction technique. Boletim do Centro de Pesquisa de Processamento de Alimentos 37(2), 68–82 (2021). https://doi.org/10.5380/bceppa.v37i2.78875

    Article  Google Scholar 

  8. L.A. Andrade, N.A. Barbosa, J. Pereira, Extraction and properties of starches from the non-traditional vegetables Yam and Taro. Polimeros 27(2), 151–157 (2017). https://doi.org/10.1590/0104-1428.04216

    Article  Google Scholar 

  9. G. Jiang, L. Ramsden, Characterisation and yield of the arabinogalactan-protein mucilage of taro corms. J. Sci. Food Agric. 79(5), 671–674 (1999). https://doi.org/10.1002/(SICI)1097-0010(199904)79:5<671::AID-JSFA233>3.0.CO;2-H

    Article  CAS  Google Scholar 

  10. R.M. Nguimbou, T. Boudjeko, N.Y. Njintang, M. Himeda, J. Scher, C.M.F. Mbofung, Mucilage chemical profile and antioxidant properties of giant swamp taro tubers. J. Food Sci. Technol. 51(12), 3559–3567 (2014). https://doi.org/10.1007/s13197-012-0906-6

    Article  CAS  PubMed  Google Scholar 

  11. L.A. Andrade, C.A. Nunes, J. Pereira, Relationship between the chemical components of taro rhizome mucilage and its emulsifying property. Food Chem. 178, 331–338 (2015). https://doi.org/10.1016/j.foodchem.2015.01.094

    Article  CAS  PubMed  Google Scholar 

  12. N.Y. Njintang, T. Boudjeko, L.N. Tatsadjieu, E. Nguema-Ona, J. Scher, C.M.F. Mbofung, Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms. J. Food Sci. Technol. 51(5), 900–907 (2014). https://doi.org/10.1007/s13197-011-0580-0

    Article  CAS  PubMed  Google Scholar 

  13. A.H. Mijinyawa, G. Durga, A. Mishra, Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. Int. J. Biol. Macromol. 119, 1090–1097 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.045

    Article  CAS  PubMed  Google Scholar 

  14. A.M. Ghribi, I.M. Gafsi, C. Blecker, S. Danthine, H. Attia, S. Besbes, Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. J. Food Eng. 165, 179–188 (2015). https://doi.org/10.1016/J.JFOODENG.2015.06.021

    Article  CAS  Google Scholar 

  15. B. Alizadeh Behbahani, F. Tabatabaei Yazdi, F. Shahidi, M.A. Hesarinejad, S.A. Mortazavi, M. Mohebbi, Plantago major seed mucilage: optimization of extraction and some physicochemical and rheological aspects. Carbohyd. Polym. 155, 68–77 (2017). https://doi.org/10.1016/J.CARBPOL.2016.08.051

    Article  CAS  Google Scholar 

  16. L.A. Andrade, D.A. de Oliveira Silva, C.A. Nunes, J. Pereira, Experimental techniques for the extraction of taro mucilage with enhanced emulsifier properties using chemical characterization. Food Chem. 327, 127095 (2020). https://doi.org/10.1016/J.FOODCHEM.2020.127095

    Article  CAS  PubMed  Google Scholar 

  17. X. Guo, W. Zhao, X. Pang, X. Liao, X. Hu, J. Wu, Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: a comparative study. Food Hydrocolloids 35, 217–225 (2014). https://doi.org/10.1016/J.FOODHYD.2013.05.010

    Article  CAS  Google Scholar 

  18. G. Amini, F. Salehi, M. Rasouli, Color changes and drying kinetics modeling of basil seed mucilage during infrared drying process. Information Process. Agric. 9(3), 397–405 (2022). https://doi.org/10.1016/J.INPA.2021.07.001

    Article  Google Scholar 

  19. Anwar, M. A. (2020). Taro (Colocasia esculenta) water-soluble non-starch polysaccharide: Extraction, characteristics, properties, and biological activities (Doctoral dissertation, University of Otago).

  20. N. Hussain, I. Ishak, M.F. Abdullah, A.A. Rauh, N. Azhar, Water soluble hydrocolloid from basil seed (Ocimum basilicum L.) mucilage. Malays. Appl. Biol. 48(2), 97–101 (2019)

    Google Scholar 

  21. D. Vashisht, A. Pandey, A. Hermenean, M.J. Yáñez-Gascón, H. Pérez-Sánchez, K.J. Kumar, Effect of dry heating and ionic gum on the physicochemical and release properties of starch from Dioscorea. Int. J. Biol. Macromol. 95, 557–563 (2017). https://doi.org/10.1016/j.ijbiomac.2016.11.064

    Article  CAS  PubMed  Google Scholar 

  22. T. Al-Idee, H. Habbal, F. Karabet, H. Alzubi, Study of some functional properties and antioxidant activity of two types of cherry trees (Prunus avium) gum exudates grown in Syria. Iraqi J. Sci. 61(1), 13–22 (2020). https://doi.org/10.24996/ijs.2020.61.1.2

    Article  Google Scholar 

  23. D.Y. Kim, H. Kim, Effect of mucilage extracted from Corchorus olitorius leaves on bovine serum albumin (BSA)-stabilized oil-in-water emulsions. Polymers (2023). https://doi.org/10.3390/POLYM15010113

    Article  PubMed  PubMed Central  Google Scholar 

  24. K. Dybka-Stępień, A. Otlewska, P. Góźdź, M. Piotrowska, The renaissance of plant mucilage in health promotion and industrial applications: a review. Nutrients (2021). https://doi.org/10.3390/NU13103354

    Article  PubMed  PubMed Central  Google Scholar 

  25. M. Jouki, S.A. Mortazavi, F.T. Yazdi, A. Koocheki, Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int. J. Biol. Macromol. 66, 113–124 (2014). https://doi.org/10.1016/J.IJBIOMAC.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  26. A. Koocheki, A.R. Taherian, S.M.A. Razavi, A. Bostan, Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids 23(8), 2369–2379 (2009). https://doi.org/10.1016/J.FOODHYD.2009.06.014

    Article  CAS  Google Scholar 

  27. E. Ozturk, M.H. Oztop, H. Alpas, Use of high hydrostatic pressure (HHP) for increasing the product yield of lignocellulosic biomass hydrolysis: a study for peanut hull and microcrystalline cellulose. LWT (2021). https://doi.org/10.1016/J.LWT.2021.111556

    Article  Google Scholar 

  28. M. Said, B. Haq, DAl. Shehri, M.M. Rahman, N.S. Muhammed, M. Mahmoud, Modification of xanthan gum for a high-temperature and high-salinity reservoir. Polymers (2021). https://doi.org/10.3390/POLYM13234212

    Article  PubMed  PubMed Central  Google Scholar 

  29. K. Akinluwade, G. Oyatogun, G. Alebiowu, I. Adeyemi, I. Akinwole, Synthesis and characterization of polymeric nanoparticles formed from cowry shells and acacia gum extracts. J. Adv. Biol. Biotechnol. 14(1), 1–8 (2017). https://doi.org/10.9734/JABB/2017/34880

    Article  Google Scholar 

  30. G. Lazar, D. Ureche, I.L. Ifrim, M. Stamate, C. Ureche, V. Nedeff, I.D. Nistor, A.L. Finaru, I.M. Lazar, Effects of the environmental stress on two fish populations revealed by statistical and spectral analysis. Environ. Eng. Manag. J. 11(1), 109–124 (2012). https://doi.org/10.30638/eemj.2012.016

    Article  CAS  Google Scholar 

  31. C.E. Brunchi, M. Bercea, S. Morariu, M. Dascalu, Some properties of xanthan gum in aqueous solutions: effect of temperature and pH. J. Polym. Res. (2016). https://doi.org/10.1007/S10965-016-1015-4

    Article  Google Scholar 

  32. Z. Ren, X. Li, F. Ma, Y. Zhang, W. Hu, M.Z.H. Khan, X. Liu, Oil-in-water emulsions prepared using high-pressure homogenisation with Dioscorea opposita mucilage and food-grade polysaccharides: guar gum, xanthan gum, and pectin. LWT 162, 113468 (2022). https://doi.org/10.1016/J.LWT.2022.113468

    Article  CAS  Google Scholar 

  33. M.M. Lira, J.G. de Oliveira Filho, T.L. de Sousa, N.M. da Costa, A.C. Lemes, S.S. Fernandes, M.B. Egea, Selected plants producing mucilage: overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res. Int. 169, 112822 (2023). https://doi.org/10.1016/J.FOODRES.2023.112822

    Article  CAS  PubMed  Google Scholar 

  34. A. Zameni, M. Kashaninejad, M. Aalami, F. Salehi, Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. J. Food Sci. Technol. 52, 5914–5921 (2015). https://doi.org/10.1007/s13197-014-1679-x

    Article  PubMed  Google Scholar 

  35. J.M. Vieira, R.A. Mantovani, M.F.J. Raposo, M.A. Coimbra, A.A. Vicente, R.L. Cunha, Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohyd. Polym. 213, 217–227 (2019). https://doi.org/10.1016/J.CARBPOL.2019.02.078

    Article  CAS  Google Scholar 

  36. N.Y. Njintang, J. Scher, C.M.F. Mbofung, Texture, microstructure and physicochemical characteristics of taro (Colocasia esculenta) as influenced by cooking conditions. J. Food Eng. 91, 373–379 (2009). https://doi.org/10.1016/j.jfoodeng.2008.09.030

    Article  CAS  Google Scholar 

  37. N. Prasad, N. Thombare, S.C. Sharma, S. Kumar, Gum arabic – A versatile natural gum: a review on production, processing, properties and applications. Ind. Crops Prod. 187, 115304 (2022). https://doi.org/10.1016/J.INDCROP.2022.115304

    Article  CAS  Google Scholar 

  38. M. Anwar, G. Babu, A.E.D. Bekhit, Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. Innov. Food Sci. Emerg. Technol. 70, 102691 (2021). https://doi.org/10.1016/J.IFSET.2021.102691

    Article  CAS  Google Scholar 

  39. A. Hajmohammadi, J. Keramat, M. Hojjatoleslami, H. Molavi, The effect of adding oat β-D-glucan on physical properties of sponge cake. Iran. Food Sci. Technol. Res. J. (2013). https://doi.org/10.22067/ifstrj.v9i3.29648

    Article  Google Scholar 

Download references

Funding

This research received no external.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Arici.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arici, M., Senol, B.M., Ozturk, E. et al. Effect of extraction temperature of taro mucilage on physicochemical and rheological properties. Food Measure 18, 1913–1921 (2024). https://doi.org/10.1007/s11694-023-02297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02297-6

Keywords

Navigation