Skip to main content
Log in

Sodium chloride inhibits the heat-induced formation of advanced glycation end-products in myofibrillar protein–reducing sugar–oleic acid model systems

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This research aimed to investigate the effects of sodium chloride (NaCl) on the formation of Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), in pork myofibrillar protein (MFP)–reducing sugar (glucose or ribose) systems (with or without oleic acid) during commercial sterilization (121 °C, 10 min). The addition of NaCl (1% or 2%) in all tested model systems (MFP and MFP–glucose systems with or without oleic acid, and MFP–ribose–oleic acid system), except for the MFP–ribose system, resulted in less heat-induced production of CML and CEL. Although the addition of oleic acid in MFP or MFP–sugar systems without NaCl generally promoted the formation of CML and CEL during heating, the heat-induced production of CML and CEL in MFP–sugar–oleic acid–NaCl systems were much lower than that in their MFP–sugar–NaCl counterparts. This implies that the presence of NaCl could alter the general promoting effect of lipid oxidation on the formation of advanced glycation end-products in protein–reducing sugar systems, which may be due to the effects of NaCl on the roles of free radicals playing in the autoxidation of reducing sugars as well as in the Maillard reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Uribarri, M.D. del Castillo, M.P. de la Maza, R. Filip, A. Gugliucci, C. Luevano-Contreras, Adv. Nutr. 6(4), 461–473 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  2. L. Li, S. Kong, Y. Liu, Y. Huang, Y. Li, K. Lai, J. Food Meas. Charact. 15, 5337–5344 (2021)

    Article  Google Scholar 

  3. L. Niu, H. Yu, L. Zhang, Q. Zhao, K. Lai, Y. Liu, Y. Huang. J. Food Compos. Anal. 112, 104681 (2022)

    Article  CAS  Google Scholar 

  4. H. Yu, Q. Zhong, Y. Guo, Y. Xie, Y. Cheng, W. Yao, Food Res. Int. 133, 109191 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. L. Niu, X. Sun, J. Tang, J. Wang, B.A. Rasco, K. Lai, Y. Huang, J. Food Compos. Anal. 57, 56–63 (2017)

    Article  CAS  Google Scholar 

  6. S. Wu, Y. Huang, M. Chen, F. Li, X. Xiang, K. Lai, J. Food Compos. Anal. 90, 103491 (2020)

    Article  CAS  Google Scholar 

  7. L. Dong, Y. Li, Q. Chen, Y. Liu, Z. Qiao, S. Sang, J. Zhang, S. Zhan, Z. Wu, L. Liu. Food Chem. 417, 135861 (2023)

    Article  CAS  Google Scholar 

  8. X. Sun, J. Tang, J. Wang, B.A. Rasco, K. Lai, Y. Huang, J. Food Meas. Charact. 11(1), 320–328 (2016)

    Article  Google Scholar 

  9. J. Lu, M. Li, M. Shen, J. Xie, M. Xie. Foods. 12, 394 (2023)

    Article  CAS  Google Scholar 

  10. X. Sun, J. Tang, J. Wang, B.A. Rasco, K. Lai, Y. Huang. Meat Sci. 116, 1–7 (2016)

    Article  CAS  Google Scholar 

  11. C.G. Prosser, E.A. Carpenter, A J. Hodgkinson Food Chem. 274, 886–890 (2019)

    Article  CAS  Google Scholar 

  12. S. Kong, F. Chu, Y. Huang, L. Niu, K. Lai. J. Food Meas. Charact. 16(5), 3469–3476 (2022)

    Article  Google Scholar 

  13. L. Niu, X. Sun, J. Tang, J. Wang, J. Wang, B.A. Rasco, K. Lai, Y. Fan, Y. Huang. Food Chem. 264, 455–461 (2018)

    Article  CAS  Google Scholar 

  14. X. Sun, X. Li, J. Tang, K. Lai, B.A. Rasco, Y. Huang, Food Chem. 336, 127706 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. W. Zhao, P. Cai, N. Zhang, T. Wu, A. Sun, G. Jia. Food Chem. 392, 133295 (2022)

    Article  CAS  Google Scholar 

  16. T. Sakai, Y. Shimizu, S. Kawahara, Biosci. Biotechnol. Biochem. 70(4), 815–820 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Li, C. Xue, W. Quan, F. Qin, Z. Wang, Z. He, M. Zeng, J. Chen Meat Sci. 177, 108489 (2021)

    Article  CAS  Google Scholar 

  18. D.B. Kul, P. Anlar, Z.F.Y. Oral, M. Kaya, G. Kaban. J. Stored Prod. Res. 93, 101856 (2021)

    Article  Google Scholar 

  19. J. Kanner, S. Harel, R. Jaffe., J. Agric. Food Chem. 39, 1017–1021 (1991)

    Article  CAS  Google Scholar 

  20. X. Feng, L. Chen, N. Lei, S. Wang, X. Xu, G. Zhou, Z. Li, J. Agric. Food Chem. 65(13), 2816–2826 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. D. Sharedeh, P. Gatellier, T. Astruc, J. Daudin Meat Sci. 110, 24–13 (2015)

    Article  CAS  Google Scholar 

  22. X. Zhao, L. Yue, X. Liu, L. Liu, Czech J. Food Sci. 35(5), 367–375 (2017)

    Article  CAS  Google Scholar 

  23. K. Yamaguchi, Y. Noumi, K. Nakajima, C. Nagatsuka, H. Aizawa, R. Nakawaki, E. Mizude, Y. Otsuka, T. Homma, N. Van Chuyen, Biosci. Biotechnol. Biochem. 73(11), 2379–2383 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Chen, Y. Lin, M. Pan, C. Ho, W Hung. Food Chem. X. 16, 100515 (2022)

    Article  CAS  Google Scholar 

  25. L. Yu, X. Zhang, W. Sun, G. Shen, Y. Yang, M. Zeng. Food Chem. 420, 136119 (2023)

    Article  CAS  Google Scholar 

  26. Z. Zhu, A.P. Bassey, M. Huang, I.A. Khan, Food Sci. Hum. Well. 12(5), 1571–1579 (2023)

    Article  CAS  Google Scholar 

  27. S. Zhang, P. Zhou, P. Han, H. Zhang, S. Dong, M. Zeng. Foods. 12, 1039 (2023)

    Article  CAS  Google Scholar 

  28. A. Nawaz, S. Irshad, I. Ali Khan, I. Khalifa, N. Walayat, R. Muhammad Aadil, M. Kumar, M. Wang, F. Chen, K.W. Cheng, J.M. Lorenzo, Food Res. Int. 157, 111322 (2022)

    Article  CAS  PubMed  Google Scholar 

  29. D. Park, Y.L. Xiong, A. L. Alderton. Food Chem. 101(3), 1239–1246 (2007)

    Article  CAS  Google Scholar 

  30. A.G. Gornall, C.J. Bardawill, M. M. David. J. Biol. Chem. 177, 751–766 (1949)

    Article  CAS  Google Scholar 

  31. A. Szuba-Trznadel, M. Korzeniowska, T. Hikawczuk, B. Fuchs. Animals. 11, 2134 (2021)

    Article  Google Scholar 

  32. F. Kong, J. Tang, B. Rasco, C. Crapo, S. Smiley. J. Food Sci. 72, S103–S111 (2007)

    CAS  PubMed  Google Scholar 

  33. X. Sun, J. Tang, J. Wang, B.A. Rasco, K. Lai, Y. Huang. Food Chem. 172, 802–807 (2015)

    Article  CAS  Google Scholar 

  34. C. Sharma, A. Kaur, S.S. Thind, B. Singh, S. Raina. J. Food Sci. Technol. 52(12), 7561–7576 (2015)

    Article  CAS  Google Scholar 

  35. Q. Zhang, Y. Wang, L. Fu, Compr. Rev. Food Sci. Food Saf. 19, 2559–2587 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. H. Lin, K. Lai, J. Zhang, F. Wang, Y. Liu, B.A. Rasco, Y. Huang, Food Chem. X. 15, 100387 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M.W. Poulsen, R.V. Hedegaard, J.M. Andersen, B. de Courten, S. Bügel, J. Nielsen, L.H. Skibsted, L. O. Dragsted. Food Chem. Toxicol. 60, 10–37 (2013)

    Article  CAS  Google Scholar 

  38. Y. Wei, C.S. Han, J. Zhou, Y. Liu, L. Chen, R.Q. He, Biochim. Biophys. Acta. 1820, 488–494 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. A. Twarda-Clapa, A. Olczak, A.M. Białkowska, M. Koziołkiewicz. Cells. 11, 1312 (2022)

    CAS  Google Scholar 

  40. J.E. Hodge., J. Agric. Food Chem. 1, 928–943 (1953)

    Article  CAS  Google Scholar 

  41. M.A. Glomb, V.M. Monnier., J. Biol. Chem. 270, 10017–10026 (1995)

    Article  CAS  PubMed  Google Scholar 

  42. S.P. Wolff, R.T. Dean, Biochem. J. 245, 243–250 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Treibmann, A. Hellwig, M. Hellwig, T. Henle, J. Agric. Food Chem. 65, 10562–10570 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. X. Zhao, X. Zhang, B. Ye, H. Yan, Y. Zhao, L. Liu, Food Res. Int. 136, 10950 (2020)

    Article  Google Scholar 

  45. L. Han, L. Li, B. Li, D. Zhao, Y. Li, Z. Xu, G. Liu, Food Chem. Toxicol. 60, 536–541 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. L. Han, L. Li, B. Li, D. Zhao, Y. Li, Z. Xu, G. Liu, Food Res. Int. 51, 836–840 (2013)

    Article  CAS  Google Scholar 

  47. K. Yamaguchi, Y. Nomi, T. Homma, M. Kasai, Y. Otsuka. Food Sci. Technol. Res. 18(1), 67–76 (2012)

    Article  CAS  Google Scholar 

  48. C. Cerny, F. Fitzpatrick, J. Ferreira, Food Chem. 125, 973–977 (2011)

    Article  CAS  Google Scholar 

  49. T. Kocadağlı, V. Gökmen., J. Agric. Food Chem. 64, 7838–7848 (2016)

    Article  PubMed  Google Scholar 

  50. A.K.K. Rahn, V.A. Yaylayan, Food Chem. 166, 301–308 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was financially supported by the Natural Science Foundation of Shandong Province (ZR2019PC058) and the National Natural Science Foundation of China (32272391, 31871733).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Niu or Yiqun Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Lai, K. & Huang, Y. Sodium chloride inhibits the heat-induced formation of advanced glycation end-products in myofibrillar protein–reducing sugar–oleic acid model systems. Food Measure 18, 1293–1301 (2024). https://doi.org/10.1007/s11694-023-02288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02288-7

Keywords

Navigation