Skip to main content

Advertisement

Log in

The effect of the use of pekmez and honey as sugar substitutes on the quality characteristics and the acrylamide content of sponge cakes and cookies

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Nowadays, the utilization of sugar substitutes in bakery products can be demanded on the assumption that they are healthier. However, the use of ingredients containing reducing sugars in heat-treated products may increase the formation of some toxic compounds. Thus, this study aimed to investigate the safety of using honey/pekmez as sugar substitutes in bakery products in terms of acrylamide. Acrylamide concentrations as well as the quality characteristics of sponge cakes and cookies containing pekmez/honey as sugar substitutes were determined. Acrylamide levels in sponge cake control group and honey sponge cake samples remained below the limit of detection. However, acrylamide concentrations were determined as 141.36 ± 4.21, 162.82 ± 3.63, and 195.67 ± 0.85 ng/g in samples containing pekmez at percentages of 60%, 80%, and 100% as sugar substitutes in sponge cakes formulations, respectively. While acrylamide was determined as 30.97 ± 4.68 ng/g in cookie control group, concentrations in samples containing pekmez at percentages of 60%, 80%, and 100% as sugar substitutes in formulations were 824.3 ± 27.47, 1274.04 ± 7.59 and 1468.32 ± 55.48 ng/g, respectively. 374.25 ± 19.37, 495.63 ± 2.89, and 598.63 ± 12.95 ng/g acrylamide were detected in the cookie samples containing honey at the aforementioned percentages in formulations. As a result, adding pekmez/honey in bakery products to reduce refined sugar intake can significantly increase acrylamide concentrations of these products. Similar practices made to reduce refined sugar intake can turn into an application that increases exposure to acrylamide, a toxic compound.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.Y. Küçük, S.D. Velioğlu, Determining some chemical properties of the product marketed under the name of ‘Carob Extract’ and comparison and with carob pekmez. Gıda. (2022). https://doi.org/10.15237/GIDA.GD22033

    Article  Google Scholar 

  2. Turkish Food Codex Grape Pekmez Communiqué, Türk Gıda Kodeksi Üzüm Pekmezi Tebliği (Tebliğ no: 2017/8), no. 30110, 2017. Accessed: Nov. 11, 2022. [Online]. Available: https://www.resmigazete.gov.tr/eskiler/2017/06/20170930-24.htm

  3. Z. Saba, M. Suzana, M. Yasmin Anum, Honey: food or medicine Med. & Health. 8(1), 3–18 (2013)

    Google Scholar 

  4. N. Bilgiçli, M. Akbulut, Effects of different pekmez (fruit molasses) types on chemical, nutritional content and storage stability of cake. J. Food Qual. 32(1), 96–107 (2009). https://doi.org/10.1111/j.1745-4557.2008.00238.x

    Article  Google Scholar 

  5. A. Şimşek, N. Artik, E. Baspinar, Detection of raisin concentrate (Pekmez) adulteration by regression analysis method. J. Food Compost Anal. 17(2), 155–163 (2004). https://doi.org/10.1016/S0889-1575(03)00105-4

    Article  Google Scholar 

  6. C. Türkben, S. Suna, G. İzli̇, V. Uylaşer, C. Demir, Physical and chemical properties of pekmez (Molasses) produced with different grape cultivars, J Agric Sc. (Belihuloya), 22(2016), 339–348 2016, https://doi.org/10.1501/Tarimbil_0000001392

  7. B. Aghamohammadi, T.B. Ghıassı, M. Honarvar, B. Delkhosh, The effects of using molasses as a replacement for sugar on dough properties and volume and color of shortened cake. J. Food Sci. Technol. 4(2), 37–45 (2012)

    Google Scholar 

  8. D.T. Bornare, K.S. Ajaz, Khan, V, Physical and sensory evaluation of cookies incorporated with oats and honey. IJERT. 4(08), 407–411 (2015). https://doi.org/10.17577/ijertv4is080395

    Article  Google Scholar 

  9. M.K. Demir, M. Kılınç, Effect of honey powder substitution on cake quality. Necmettin Erbakan Uni J Sci Eng. 1(1), 53–58 (2019)

    Google Scholar 

  10. N. Ertaş, H. Çoklar, The effect of different types of pekmez as natural source of sugar on cake dough and cake characteristics. Selçuk J. Agric. Food Sci. 22(46), 51–54 (2008)

    Google Scholar 

  11. K. Gunderson, K. Coate, P. Terry, The effects of replacing granulated sugar with locally farmed honey on the physical, nutritional and sensory characteristics of sugar cookies. J. Acad. Nutr. Diet. 118(9), A94 (2018). https://doi.org/10.1016/J.JAND.2018.06.128

    Article  Google Scholar 

  12. C. Inanır, Investigation of some Characteristics of Sugar Reduced Biscuits by Using Carob Molasses (” Graduate School of Natural and Applied Sciences, Erciyes University, 2018)

  13. E.I. Geană, C.T. Ciucure, D. Costinel, R.E. Ionete, Evaluation of honey in terms of quality and authenticity based on the general physicochemical pattern, major sugar composition and δ13C signature. Food Cont. (2020). https://doi.org/10.1016/j.foodcont.2019.106919

    Article  Google Scholar 

  14. S. Karaman, M. Tahsin Yilmaz, G. Ozturk, F. Yuksel, O.S. Toker, M. Dogan, Characterızatıon of grape molasses/sesame paste/honey blends: multiple response optimization of some physicochemical, bioactive, viscoelastic and sensory properties. J. Process. Eng. 40(e12406), 1–13 (2017). https://doi.org/10.1111/jfpe.12406

    Article  CAS  Google Scholar 

  15. D.S. Mottram, B.L. Wedzicha, A.T. Dodson, Acrylamide is formed in the maillard reaction. Nature. 419(6906), 448–449 (2002). https://doi.org/10.1038/419448A

    Article  CAS  PubMed  Google Scholar 

  16. R.H. Stadler et al., Food chemistry: Acrylamide from Maillard reaction products. Nature. 419(6906), 449–450 (2002). https://doi.org/10.1038/419449a

    Article  CAS  PubMed  Google Scholar 

  17. D.V. Zyzak et al., Acrylamide formation mechanism in heated foods, J. Agric. Food Chem., 51(16), 4782–4787 (2003), https://doi.org/10.1021/jf034180i

  18. WHO - IARC, IARC monographs on the evaluation of carcinogenic risks to humans, 60, (1994)

  19. L. Abramsson-Zetterberg, A.C. Vikström, M. Törnqvist, K.E. Hellenäs, Differences in the frequency of micronucleated erythrocytes in humans in relation to consumption of fried carbohydrate-rich food. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 653(1–2), 50–56 (2008). https://doi.org/10.1016/j.mrgentox.2008.03.007

    Article  CAS  Google Scholar 

  20. C. Rudén, Acrylamide and cancer risk - expert risk assessments and the public debate. Food Chem. Toxicol. 42(3), 335–349 (2004). https://doi.org/10.1016/j.fct.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  21. E. Dybing, T. Sanner, Risk assessment of acrylamide in foods. Toxicol. Sci. 75(1), 7–15 (2003). https://doi.org/10.1093/toxsci/kfg165

    Article  CAS  PubMed  Google Scholar 

  22. EFSA, Scientific opinion on acrylamide in food. EFSA J. (2015). https://doi.org/10.2903/J.EFSA.2015.4104

    Article  Google Scholar 

  23. P. Luning, M. Sanny, Acrylamide in fried potato products, acrylamide in Food: analysis, content and potential health effects, 159–179, (2016), https://doi.org/10.1016/B978-0-12-802832-2.00008-5

  24. N. Surdyk, J. Rosén, R. Andersson, P. Åman, Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem. 52(7), 2047–2051 (2004). https://doi.org/10.1021/jf034999w

    Article  CAS  PubMed  Google Scholar 

  25. E. Tareke, P. Rydberg, P. Karlsson, S. Eriksson, M. Törnqvist, Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50(17), 4998–5006 (2002). https://doi.org/10.1021/jf020302f

    Article  CAS  PubMed  Google Scholar 

  26. T.M. Amrein, B. Schönbächler, F. Escher, R. Amadò, Acrylamide in gingerbread: critical factors for formation and possible ways for reduction. J. Agric. Food Chem. 52, 4282–4288 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. V. Gökmen, Ã.Ã. Açar, H. Köksel, J. Acar, Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 104(3), 1136–1142 (2007). https://doi.org/10.1016/j.foodchem.2007.01.008

    Article  CAS  Google Scholar 

  28. AACC, “AACC Approved methods of analysis, 11th Ed. Methods 10-90-01. Cereals & Grains Association, St. Paul, MN.,” 2000

  29. AACC, “AACC Approved methods of analysis, 11th Ed. Methods 10-54-01. Cereals & Grains Association, St. Paul, MN.,” AACC International Approved Methods, 2000

  30. A. Rommel, D.A. Heatherbell, R.E. Wrolstad, Red raspberry juice and wine: Effect of processing and storage on anthocyanin pigment composition, color and appearance. J. Food Sci. 55(4), 1011–1017 (1990). https://doi.org/10.1111/J.1365-2621.1990.TB01586.X

    Article  CAS  Google Scholar 

  31. M. Zappalà, B. Fallico, E. Arena, A. Verzera, Methods for the determination of HMF in honey: a comparison. Food Cont. 16(3), 273–277 (2005). https://doi.org/10.1016/J.FOODCONT.2004.03.006

    Article  Google Scholar 

  32. S. Bogdanov, Harmonised methods of the international honey commission: Introduction and general comments on the methods, (2002)

  33. Annonymous, Analysis of honey, determination of the content of saccharides, fructose, glucose, saccharose, turanose, and maltose, HPLC Method., DIN 10758, (1997), [Online]. Available: https://infostore.saiglobal.com/en-us/standards/din-10758-1997-381967_saig_din_din_868210/

  34. Agilent, Quantification of acrylamide in a variety of food matrices by LC/MS/MS triple quadrupole. application note. [Online]. Available: https://www.agilent.com/cs/library/applications/application-acrylamide-food-6470-qqq-5994-0820en-agilent.pdf

  35. U. Krupa-Kozak, N. Drabińska, C.M. Rosell, B. Piłat, M. Starowicz, T. Jeliński, B. Szmatowicz, High-quality gluten-free sponge cakes without sucrose: inulin-type fructans as sugar alternatives. Foods. 9(12), 1735 (2020). https://doi.org/10.3390/FOODS9121735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Majzoobi, F. Ghiasi, M. Habibi, S. Hedayati, A. Farahnaky, Influence of soy protein isolate on the quality of batter and sponge cake. J. Food Process. Preserv. 38(3), 1164–1170 (2014). https://doi.org/10.1111/jfpp.12076

    Article  CAS  Google Scholar 

  37. AACC, AACC Approved methods of analysis, 11th Ed. Method 74 – 09 measurement of bread firmness by universal testing machine. Cereals & Grains Association, St, (2010)

  38. O.B. Karaca, I.B. Saydam, M. Güven, Physicochemical, mineral and sensory properties of set-type yoghurts produced by addition of grape, mulberry and carob molasses (Pekmez) at different ratios. Int. J. Dairy. Technol. 65(1), 111–117 (2012). https://doi.org/10.1111/J.1471-0307.2011.00731.X

    Article  CAS  Google Scholar 

  39. M. Sengül, M.F. Ertugay, M. Sengül, Rheological, physical and chemical characteristics of mulberry pekmez. Food Cont. 16(1), 73–76 (2005). https://doi.org/10.1016/J.FOODCONT.2003.11.010

    Article  Google Scholar 

  40. L. Tounsi, I. Ghazala, N. Kechaou, Physicochemical and phytochemical properties of Tunisian carob molasses. J. Food Meas. Charact. 14(1), 20–30 (2020). https://doi.org/10.1007/S11694-019-00263-9

    Article  Google Scholar 

  41. S. Kus, F. Gogus, S. Eren, Hydroxymethyl furfural content of concentrated food products. Int. J. Food Prop. 8(2), 367–375 (2005). https://doi.org/10.1081/JFP-200060257

    Article  CAS  Google Scholar 

  42. E. Capuano, V. Fogliano, Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT. 44(4), 793–810 (2011)

    Article  CAS  Google Scholar 

  43. C. Alimentarius, C. Alimentarius, Alinorm 01/25, (2000). Draft revised standard for honey at step 8 of the Codex procedure.” Accessed: Nov. 11, 2022. [Online]. Available: https://scholar.google.com/scholar?q=Codex%20Alimentarius,%20Alinorm%200125%20.%20Draft%20revised%20standard%20for%20honey%20at%20step%208%20of%20the%20Codex%20procedure

  44. H.M. Habib, F.T. Al Meqbali, H. Kamal, U.D. Souka, W.H. Ibrahim, Physicochemical and biochemical properties of honeys from arid regions. Food Chem. 153, 35–43 (2014). https://doi.org/10.1016/J.FOODCHEM.2013.12.048

    Article  CAS  PubMed  Google Scholar 

  45. Council Directive, 2001/110/EC Relating to Honey (Council Directive relating in honey, 2001)

  46. H. Ölmez, F. Tuncay, N. Özcan, S. Demirel, A survey of acrylamide levels in foods from the Turkish market. J. Food Compost Anal. 21(7), 564–568 (2008). https://doi.org/10.1016/j.jfca.2008.04.011

    Article  CAS  Google Scholar 

  47. A. Guler, A. Bakan, C. Nisbet, O. Yavuz, Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup, Food Chem, vol. 105(3), 1119–1125 (2007), https://doi.org/10.1016/j.foodchem.2007.02.024

  48. M. Yılmaz, Investigation of determination of fraud, adulteration and geographic origin of molasses and similar foods, Yıldız Teknik Üniversitesi, İstanbul, 2012. Accessed: Nov. 11, 2022. [Online]. Available: https://www.iso.org.tr/sites/1/upload/files/pekmez_ve_pekmeze_benzer-254.pdf

  49. S.A. El Sohaimy, S.H.D. Masry, M.G. Shehata, Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 60(2), 279–287 (2015). https://doi.org/10.1016/j.aoas.2015.10.015

    Article  Google Scholar 

  50. J. Chirife, M.C. Zamora, A. Motto, The correlation between water activity and % moisture in honey: fundamental aspects and application to Argentine honeys, J. Food Eng., 72(3), 287–292 (2006), https://doi.org/10.1016/J.JFOODENG.2004.12.009

  51. S. Bogdanov, T. Jurendic, R. Sieber, P. Gallmann, Honey for nutrition and health: a review. J. Am. Coll. Nutr. 27(6), 677–689 (2008). https://doi.org/10.1080/07315724.2008.10719745

    Article  CAS  PubMed  Google Scholar 

  52. S. Lakshmi, A.K. Pandey, N. Ravi, N. Gopalan, R.K. Sharma, O. P. Chauhan, N. Gopalan, R. K. Sharma, Non-destructive quality monitoring of fresh fruits and vegetables, DLSJ, 2(2) 103–110 (2017), https://doi.org/10.14429/dlsj.2.11379

  53. K. Leon, D. Mery, F. Pedreschi, Leon, Color measurement in L∗ a∗ b∗ units from RGB digital images. Food Res. Int. 39(10), 1084–1091 (2006)

    Article  Google Scholar 

  54. O.S. Toker, M. Dogan, N.B. Ersoz, M.T. Yilmaz, Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Ind. Crops Prod. 50, 137–144 (2013). https://doi.org/10.1016/j.indcrop.2013.05.030

    Article  CAS  Google Scholar 

  55. S.J. Elmore, G. Koutsidis, A.T. Dodson, D.S. Mottram, B.L. Wedzicha, Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. J. Agric. Food Chem. 53(4), 1286–1293 (2005). https://doi.org/10.1021/jf048557b

    Article  CAS  PubMed  Google Scholar 

  56. A. Mousavi Khaneghah, Y. Fakhri, A. Nematollahi, F. Seilani, Y. Vasseghian, The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Res. Int. (2020). https://doi.org/10.1080/87559129.2020.1791175

    Article  PubMed  Google Scholar 

  57. H. Jeong, S. Hwang, H. Kwon, Survey for acrylamide in processed foods from Korean market and individual exposure estimation using a non-parametric probabilistic model. Food Addit. Contam. Part. A Chem. Anal. Control Expo Risk Assess. 37(6), 916–930 (2020). https://doi.org/10.1080/19440049.2020.1746410/SUPPL_FILE/TFAC_A_1746410_SM6446.XLSX

    Article  CAS  PubMed  Google Scholar 

  58. E. Alpözen, G. Güven, Özdestan, A. Üren, Determination of acrylamide in three different bread types by an in-house validated LC-MS/MS method. Acta Aliment. 44(2), 211–220 (2015). https://doi.org/10.1556/AAlim.2013.3333

    Article  CAS  Google Scholar 

  59. S. Biedermann-Brem, A. Noti, K. Grob, D. Imhof, D. Bazzocco, A. Pfefferle, How much reducing sugar may potatoes contain to avoid excessive acrylamide formation during roasting and baking, Eur. Food Res. Technol. 217(5), 369–373 (2003). https://doi.org/10.1007/s00217-003-0779-z

  60. Y. Shen, G. Chen, Y. Li, Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chem. 96(3), 545–553 (2019). https://doi.org/10.1002/CCHE.10154

    Article  CAS  Google Scholar 

  61. L. Ahrné, C.G. Andersson, P. Floberg, J. Rosén, H. Lingnert, Effect of crust temperature and water content on acrylamide formation during baking of white bread: Steam and falling temperature baking. LWT. 40(10), 1708–1715 (2007). https://doi.org/10.1016/j.lwt.2007.01.010

    Article  CAS  Google Scholar 

  62. M.A. Schouten, C. Fryganas, S. Tappi, S. Romani, V. Fogliano, Influence of lupin and chickpea flours on acrylamide formation and quality characteristics of biscuits. Food Chem. 402, 134221 (2023). https://doi.org/10.1016/J.FOODCHEM.2022.134221

    Article  CAS  PubMed  Google Scholar 

  63. S. Žilić, I.G. Aktağ, D. Dodig, M. Filipović, V. Gökmen, Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Res. Int. 132, 109109 (2020). https://doi.org/10.1016/J.FOODRES.2020.109109

    Article  PubMed  Google Scholar 

  64. E. Bråthen, A. Kita, S.H. Knutsen, T. Wicklund, Addition of glycine reduces the content of acrylamide in cereal and potato products. J. Agric. Food Chem. 53(8,), 3259–3264 (2005). https://doi.org/10.1021/jf048082o

    Article  CAS  PubMed  Google Scholar 

  65. Z. Ciesarová, E. Kiss, E. Kolek, Study of factors affecting acrylamide levels in model systems. Czech J. Food Sci. 24(3), 133–137 (2006). https://doi.org/10.17221/3308-CJFS

    Article  Google Scholar 

  66. J. Keramat, A. LeBail, C. Prost, M. Jafari, Acrylamide in baking products: a review article. Food Bioproc Tech. 4(4), 530–543 (2011). https://doi.org/10.1007/s11947-010-0495-1

    Article  CAS  Google Scholar 

  67. M. Graf, T.M. Amrein, S. Graf, R. Szalay, F. Escher, R. Amadò, Reducing the acrylamide content of a semi-finished biscuit on industrial scale. LWT. 39(7), 724–728 (2006). https://doi.org/10.1016/j.lwt.2005.05.010

    Article  CAS  Google Scholar 

  68. M. Vass, T.M. Amrein, B. Schönbächler, F. Escher, R. Amadò, Ways to reduce the acrylamide formation in cracker products. Czech J. Food Sci. 22, S19–S21 (2018). https://doi.org/10.17221/10603-CJFS

    Article  Google Scholar 

  69. M.F. Cengiz, C.P.B. Gündüz, Acrylamide exposure among Turkish toddlers from selected cereal-based baby food samples. Food Chem. Toxicol. 60, 514–519 (2013). https://doi.org/10.1016/j.fct.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  70. A. Claus, R. Carle, A. Schieber, Acrylamide in cereal products: a review, J. Cereal Sci., 47(2), 118–133 (2008), https://doi.org/10.1016/J.JCS.2007.06.016

  71. F. Velásquez, J. Espitia, O. Mendieta, S. Escobar, J. Rodríguez, Non-centrifugal cane sugar processing: a review on recent advances and the influence of process variables on qualities attributes of final products. J. Food Eng. 255, 32–40 (2019). https://doi.org/10.1016/J.JFOODENG.2019.03.009

    Article  Google Scholar 

  72. M.J. Leszkowiat, V. Barichello, R.Y. Yada, R.H. Coffin, E.C. Lougheed, D.W. Standley, Contribution of sucrose to nonenzymatic browning in potato chips. J. Food Sci. 55(1), 281–282 (1990). https://doi.org/10.1111/J.1365-2621.1990.TB06079.X

    Article  CAS  Google Scholar 

  73. M. Mesias, C. Delgado-Andrade, F. Gómez-Narváez, J. Contreras-Calderón, F.J. Morales, Formation of Acrylamide and other Heat-Induced compounds during Panela Production. Foods. 9(4), 531 (2020). https://doi.org/10.3390/FOODS9040531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J.J. Knol, W.A.M. Van Loon, J.P.H. Linssen, A.L. Ruck, M.A.J.S. Van Boekel, A.G.J. Voragen, Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. J. Agric. Food Chem. 53(15), 6133–6139 (2005). https://doi.org/10.1021/JF050504M

    Article  CAS  PubMed  Google Scholar 

  75. F. Aarabi, M. Seyedain, Ardebili, The effect of sugar type and baking condition on formation of acrylamide in industrial rotary moulded biscuit. J. Food Meas. Charact. 14(4), 2230–2239 (2020). https://doi.org/10.1007/S11694-020-00470-9

    Article  Google Scholar 

  76. T.M. Amrein et al., Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J. Agric. Food Chem. 51(18), 5556–5560 (2003). https://doi.org/10.1021/jf034344v

    Article  CAS  PubMed  Google Scholar 

  77. C. Gertz, S. Klostermann, Analysis of acrylamide and mechanisms of its formation in deep-fried products. Eur. J. Lipid Sci. Technol. 104(11), 762–771 (2002). https://doi.org/10.1002/1438-9312(200211)104:11<762::AID-EJLT762>3.0.CO;2-R

  78. W.L. Claeys, K. De Vleeschouwer, M.E. Hendrickx, Kinetics of acrylamide formation and elimination during heating of an asparagine-sugar model system. J. Agric. Food Chem. 53(26), 9999–10005 (2005). https://doi.org/10.1021/jf051197n

    Article  CAS  PubMed  Google Scholar 

  79. L.N. Bell, Moisture effects on food’s chemical stability. Water activity in foods: fundamentals and applications, (2020). https://doi.org/10.1002/9781118765982.ch9

  80. P. Sadd, C. Hamlet, The formation of acrylamide in UK cereal products. Adv. Exp. Med. Biol. (2005). https://doi.org/10.1007/0-387-24980-X_32

    Article  PubMed  Google Scholar 

  81. Ö, Çetinkaya Açar, Investigation of the Formation of Thermal Process Contaminants During Baking of Cookie-Resembling Products (PhD thesis). Hacettepe University Graduate School of Science and Engineering (2010)

  82. D. Taeymans et al., A review of acrylamide: an industry perspective on research, analysis, formation, and control. Crit. Rev. Food Sci. Nutr. 44(5), 323–347 (2004). https://doi.org/10.1080/10408690490478082

    Article  CAS  PubMed  Google Scholar 

  83. N. Yaman, S.D. Velioglu, Use of attenuated total reflectance—fourier transform infrared (ATR-FTIR) spectroscopy in combination with multivariate methods for the rapid determination of the adulteration of grape, carob and mulberry pekmez. Foods. (2019). https://doi.org/10.3390/foods8070231

    Article  PubMed  PubMed Central  Google Scholar 

  84. Q. Tong, X. Zhang, F. Wu, J. Tong, P. Zhang, J. Zhang, Effect of honey powder on dough rheology and bread quality, Food Res. Int., (2010), doi: 10.1016/J.FOODRES.2010.08.002

  85. F. Pedreschi, K. Kaack, K. Granby, Reduction of acrylamide formation in potato slices during frying. LWT. (2004). https://doi.org/10.1016/j.lwt.2004.03.001

    Article  Google Scholar 

  86. M. Süvari, G.T. Sivri, Ã. Öksüz, Effect of different roasting temperatures on acrylamide formation of some different nuts. IOSR J. Environ. Sci. Toxicol. Food Technol. (2017). https://doi.org/10.9790/2402-1104013843

    Article  Google Scholar 

  87. V. Gökmen, Ã.Ã. Açar, G. Arribas-Lorenzo, F.J. Morales, Investigating the correlation between acrylamide content and browning ratio of model cookies. J. Food Eng. (2008). https://doi.org/10.1016/j.jfoodeng.2007.12.029

    Article  Google Scholar 

  88. S. Martínez-Cervera, A. Salvador, T. Sanz, Comparison of different polyols as total sucrose replacers in muffins: Thermal, rheological, texture and acceptability properties. Food Hydrocoll. (2014). https://doi.org/10.1016/J.FOODHYD.2013.07.016

    Article  Google Scholar 

  89. V. Psimouli, V. Oreopoulou, The effect of alternative sweeteners on batter rheology and cake properties. J. Sci. Food Agric. (2012). https://doi.org/10.1002/JSFA.4547

    Article  PubMed  Google Scholar 

  90. Y.T. Khoo, A.S. Halim, K.K.B. Singh, N.A. Mohamad, Wound contraction effects and antibacterial properties of Tualang honey on full-thickness burn wounds in rats in comparison to hydrofibre. BMC Complement. Altern. Med. 10(1), 48 (2010). https://doi.org/10.1186/1472-6882-10-48

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is based primarily on the thesis of Merve Kazancı to obtain the degree of Master of Science from Tekirdag Namik Kemal University, Türkiye. The authors are thankful to Dr. Saffet Çelik and Dr. Ufuk Bağcı for their efforts in laboratory analysis, and the R&D officials of Eksim R&D Holding Company, Türkiye for providing the necessary facilities in the production of the samples.

Funding

This study was supported by the Research Fund of Tekirdag Namik Kemal University. Project number: NKUBAP.03.GA.20.234.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Merve Kazanci, Kadir Gurbuz Guner, Serap Durakli Velioglu; Methodology: Kadir Gurbuz Guner, Serap Durakli Velioglu; Formal analysis and investigation: Merve Kazanci; Writing - original draft preparation: Merve Kazanci; Writing - review and editing: Kadir Gurbuz Guner, Serap Durakli Velioglu, Supervision: Kadir Gurbuz Guner, Serap Durakli Velioglu.

Corresponding author

Correspondence to Kadir Gurbuz Guner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazanci, M., Guner, K.G. & Durakli Velioglu, S. The effect of the use of pekmez and honey as sugar substitutes on the quality characteristics and the acrylamide content of sponge cakes and cookies. Food Measure 18, 1392–1411 (2024). https://doi.org/10.1007/s11694-023-02286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02286-9

Keywords

Navigation