Skip to main content
Log in

An optimization study for amino acid extraction from bee bread using choline chloride-acetic acid deep eutectic solvent and determination of individual phenolic profile

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, the aim was to optimize the extraction conditions (molar ratio, time, temperature) in order to maximize the total individual amino acid (TAA) yield from bee bread, which is a fermented bee product, using choline chloride-acetic acid deep eutectic solvent (DES). In addition to the phenolic profile and amino acid profile investigated by LC-MS/MS, some spectrophotometric (total phenolic content, total flavonoid content, total proanthocyanidin content) and bioactivity (antioxidant/antimicrobial activity) tests were carried out on the extracts. Optimum conditions were determined as 1:2 for molar ratio, 15 min for time and 10 °C for temperature with optimization based on the TAA values of the different extracts (d: 0.99). Molar ratio and temperature were found to have statistically significant effects on TAA values. At optimum conditions, the amount of TAA obtained with DES (29.678 g/kg) was found to be approximately 35.2% and 54.4% higher than that obtained with ethanol and methanol extracts, respectively. All these results indicate that choline chloride-acetic acid DES can be chosen when preparing bee bread extracts, which are evaluated for different areas of use such as food and health due to active ingredient content. Higher active ingredients can be extracted by trying different DES combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data is available upon request to the corresponding author.

References

  1. M. Bakour, Ã. Fernandes, L. Barros, M. Sokovic, I.C. Ferreira, Bee bread as a functional product: Chemical composition and bioactive properties. LWT- Food Sci Technol. 109, 276–282 (2019). https://doi.org/10.1016/j.lwt.2019.02.008

    Article  CAS  Google Scholar 

  2. N. Ecem Bayram, Y.C. Gercek, S. Çelik, N. Mayda, A.Å. Kostić, A.M. Dramićanin, Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin–similarities and differences. Arab. J. Chem. 14(3), 103004 (2021). https://doi.org/10.1016/j.arabjc.2021.103004

    Article  CAS  Google Scholar 

  3. S. Çelik, Y.C. Gerçek, A. Özkök, N. Ecem, Bayram, Organic acids and their derivatives: minor components of bee pollen, bee bread, royal jelly and bee venom. Eur. Food Res. Technol. 248(12), 3037–3057 (2022). https://doi.org/10.1007/s00217-022-04110-y

    Article  CAS  Google Scholar 

  4. S.C. Cunha, J.O. Fernandes, Extraction techniques with deep eutectic solvents. TrAC, Trends Anal. Chem. 105, 225–239 (2018)

    Article  CAS  Google Scholar 

  5. S.L. Rodriguez Garcia, V. Raghavan, Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Crit. Rev. Food Sci. Nutr. 62(23), 6446–6466 (2022). https://doi.org/10.1080/10408398.2021.1901651

    Article  CAS  PubMed  Google Scholar 

  6. Z.J. Gao, H. Lin, H. Xiao, Air-impingement de-shelling of chestnuts (C. Mollisima): process parameter optimization. Int. J. Food Eng. 4(2) (2008). https://doi.org/10.2202/1556-3758.1321

  7. J. Zhou, Y. Qi, J. Ritho, Y. Zhang, X. Zheng, L. Wu, L.Sun, flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control. 57, 54–61 (2015)

    Article  CAS  Google Scholar 

  8. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. A J. E V. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  9. J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64(4), 555–559 (1999). https://doi.org/10.1016/s0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  10. J. Zurita, M.E. Díaz-Rubio, F. Saura-Calixto, Improved procedure to determine non-extractable polymeric proanthocyanidins in plant foods. Int. J. Food Scı Nutr. 63(8), 936–939 (2012). https://doi.org/10.3109/09637486.2012.681634

    Article  CAS  PubMed  Google Scholar 

  11. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 9–10 (1999). https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  Google Scholar 

  12. R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26), 7970–7981 (2004). https://doi.org/10.1021/jf048741x

    Article  CAS  PubMed  Google Scholar 

  13. S. Bayram, N. Kutlu, Y.C. Gerçek, S. Çelik, N.E. Bayram, Bioactive compounds of deep eutectic solvents extracts of Hypericum perforatum L.: Polyphenolic-organic acid profile by LC-MS/MS and pharmaceutical activity. Food Biosci. 49, 101926 (2022). https://doi.org/10.1016/j.fbio.2022.101926

    Article  CAS  Google Scholar 

  14. S. Çelik, N. Kutlu, Y.C. Gerçek, S. Bayram, R. Pandiselvam, N.E. Bayram, Optimization of Ultrasonic extraction of Nutraceutical and Pharmaceutical compounds from Bee Pollen with Deep Eutectic solvents using response surface methodology. Foods. 11(22), 3652 (2022). https://doi.org/10.3390/foods11223652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Granato, P. Putnik, D.B. Kovačević, J.S. Santos, V. Calado, R.S. Rocha, Trends in Chemometrics: Food Authentication, 97 Microbiology, and effects of Processing. Compr. Rev. Food Sci. 17, 663–677 (2018). https://doi.org/10.1111/1541-4337.12341

    Article  Google Scholar 

  16. H. Itoh, M.P. Thien, T.A. Hatton, D.I.C. Wang, A liquid emulsion membrane process for the separation of amino acids. Biotechnol. Bioeng. 35(9), 853–860 (1990). https://doi.org/10.1002/bit.260350902

    Article  CAS  PubMed  Google Scholar 

  17. Y. Zhou, W. Wu, N. Zhang, O.P. Soladoye, Y. Zhang, Y. Fu, Deep eutectic solvents as new media for green extraction of food proteins: opportunity and challenges. Food Res. Int. 161, 111842 (2022). https://doi.org/10.1016/j.foodres.2022.111842

    Article  CAS  PubMed  Google Scholar 

  18. R. López, R. D’Amato, M. Trabalza-Marinucci, L. Regni, P. Proietti, A. Maratta, P. Pacheco, Green and simple extraction of free seleno-amino acids from powdered and lyophilized milk samples with natural deep eutectic solvents. Food Chem. 326, 126965 (2020). https://doi.org/10.1016/j.foodchem.2020.126965

    Article  CAS  PubMed  Google Scholar 

  19. G. Li, K.H. Row, Air assisted dispersive liquid–liquid microextraction (AA-DLLME) using hydrophilic–hydrophobic deep eutectic solvents for the isolation of monosaccharides and amino acids from kelp. Anal. Lett. 53(2), 188–202 (2020). https://doi.org/10.1080/00032719.2019.1643358

    Article  CAS  Google Scholar 

  20. Y. Cui, C. Li, J. bYin, S. Li, Y. Jia, M. Bao, Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J. Mol. Liq. 236, 338–343 (2017). https://doi.org/10.1016/j.molliq.2017.04.052

    Article  CAS  Google Scholar 

  21. S. Lehmann, D. Funck, L. Szabados, D. Rentsch, Proline metabolism and transport in plant development. Amino Acids. 39, 949–962 (2010). https://doi.org/10.1007/s00726-010-0525-3

    Article  CAS  PubMed  Google Scholar 

  22. F. Keshavarzipour, Deep eutectic solvent as a recyclable catalyst for three-component synthesis of β-amino carbonyls. Catal Lett. 145, 1062–1066 (2015). https://doi.org/10.1007/s10562-014-1471-6

    Article  CAS  Google Scholar 

  23. E. Hernández-Corroto, M. Plaza, M.L. Marina, M.C. García, Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents. Innov. Food Sci. Emerg. Technol. 60, 102314 (2020). https://doi.org/10.1016/j.ifset.2020.102314

    Article  CAS  Google Scholar 

  24. B. Ozturk, C. Parkinson, M. Gonzalez-Miquel, Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 206, 1–13 (2018). https://doi.org/10.1016/j.seppur.2018.05.052

    Article  CAS  Google Scholar 

  25. Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, K. Iseki, In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 403(1–2), 136–138 (2011). https://doi.org/10.1016/j.ijpharm.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  26. H. Hameed, S. Aydin, N. Başaran, Sinapic acid: is it safe for humans? FABAD J. Pharm. Sci. 41(1), 39 (2016)

    Google Scholar 

  27. T. Bosiljkov, F. Dujmić, M.C. Bubalo, J. Hribar, R. Vidrih, M. Brnčić, S. Jokić, Natural deep eutectic solvents and ultrasound-assisted extraction: green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process. 102, 195–203 (2017). https://doi.org/10.1016/j.fbp.2016.12.005

    Article  CAS  Google Scholar 

  28. N. Mayda, A. Özkök, N. Ecem Bayram, Y.C. Gerçek, Bee bread and bee pollen of different plant sources: determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 14, 1795–1809 (2020). https://doi.org/10.1007/s11694-020-00427-y

    Article  Google Scholar 

  29. Z.A. Othman, L. Noordin, W.S.W. Ghazali, N. Omar, M. Mohamed, Nutritional, phytochemical and antioxidant analysis of bee bread from different regions of Malaysia. Indian J. Pharm. Sci. 81(5), 955–960 (2019). https://doi.org/10.36468/pharmaceutical-sciences.590

    Article  CAS  Google Scholar 

  30. N. Hudz, O. Yezerska, O. Grygorieva, J. Brindza, S. Felsöciová, M. Kačániová, P.P. Wieczorek, Analytical procedure elaboration of total flavonoid content determination and antimicrobial activity of bee bread extracts. Acta Pol. Pharm. 76(3), 439–452 (2019). https://doi.org/10.32383/appdr/103745

    Article  CAS  Google Scholar 

  31. K. Pełka, O. Otłowska, R.W. Worobo, P. Szweda, Bee bread exhibits higher antimicrobial potential compared to bee pollen. Antibiotics. 10(2), 125 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Naciye Kutlu: Investigation, Methodology, Data curation, Conceptualization, Writing – original draft. Yusuf Can Gerçek: Investigation, Methodology. Saffet Çelik: Investigation, Methodology. Sinan Bayram: Methodology, Formal analysis, Writing – review & editing. Nesrin Ecem Bayram: Investigation, Methodology, Supervision, Conceptualization, Writing – review & editing.

Corresponding author

Correspondence to Nesrin Ecem Bayram.

Ethics declarations

Competing interests

There are no financial or non-financial interests to be declared.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutlu, N., Gerçek, Y.C., Çelik, S. et al. An optimization study for amino acid extraction from bee bread using choline chloride-acetic acid deep eutectic solvent and determination of individual phenolic profile. Food Measure 18, 1026–1037 (2024). https://doi.org/10.1007/s11694-023-02273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02273-0

Keywords

Navigation