Skip to main content

Advertisement

Log in

Explicating physicochemical, structural, anti-inflammatory properties and starch digestibility of buckwheat incorporated biscuit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The public preference for healthy and natural products has prompted the development of innovative formulations for developing food products. Hence, in this study, Himalayan buckwheat (Fagopyrum esculantum Moench) was used to develop biscuits and was evaluated for their nutritional, structural, sensorial properties, and anti-inflammatory efficacy. Results revealed that buckwheat-incorporated biscuits are promising baked goods with high protein and phenolic content (12.20% and 39.86 µg gallic acid equivalents (GAE)/g, respectively). Water absorption index and Oil absorption index of biscuits varied significantly (p < 0.05) from 1.31 to 1.65 and 1.33 to 1.77 g/g, respectively. Moreover, after buckwheat incorporation, in vitro investigation on starch digestion showed a significant reduction in starch hydrolysis index, concomitantly decreasing the glycaemic index of biscuits from 94.08 to 59.80. During storage, the buckwheat addition decreased microbiological growth in biscuits as compared to the control. The study revealed that biscuits prepared with buckwheat significantly inhibited nitric oxide production, reactive oxygen species accumulation, and cytokines (tumour necrosis factor-α, interleukin-6) expression. Biscuits developed with up to 40% buckwheat flour showed improved nutritional quality with acceptable sensory attributes. Hence, Himalayan buckwheat exhibits potential anti-inflammatory activity, making it a promising functional food ingredient for further product development especially in the bakery industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is available upon reasonable request.

References

  1. P. Couceiro, E. Slywitch, F. Lenz, Eating pattern of vegetarian diet. Rev Einstein 6(3), 365–73 (2008)

    Google Scholar 

  2. P. Kaur, R. Waghmare, V. Kumar, P. Rasane, S. Kaur, Y. Gat, Recent advances in utilization of flaxseed as potential source for value addition. OCL 25(3), A304 (2018)

    Article  Google Scholar 

  3. G. Nakov, V. Stamatovska, L. Necinova, N. Ivanova, S. Damyanova, Nutritional properties of eincorn wheat (Triticum monococcum L.)–rewie, in Smart Specialization–an Innovative Strategy for Regional Economic Transformation: 55th Science Conference of Ruse University, Bulgaria, vol. 28, pp. 381–384 (2016)

  4. W.J. Boobier, J.S. Baker, B. Davies, Development of a healthy biscuit: an alternative approach to biscuit manufacture. Nutr. J. 5, 1–7 (2006)

    Article  Google Scholar 

  5. A. Zbikowska, S. Onacik-Gur, M. Kowalska, J. Rutkowska, Trans Fatty acids in polish pastry. J Food Prot. 82(6), 1028–1033 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. A. Bas, S.N. El, Nutritional evaluation of biscuits enriched with cricket flour (Acheta domesticus). Int. J. Gastron. Food Sci. 29, 100583 (2022)

    Article  Google Scholar 

  7. N. Chauhan, D. Vaidya, A. Pandit, Underutilized grains of Himalayan Region: a mini review. J. Pharmacogn. Phytochem. 7(1), 1044–1047 (2018)

    CAS  Google Scholar 

  8. Z. Luthar, M. Zhou, A. Golob, M. Germ, Breeding buckwheat for increased levels and improved quality of protein. Plants 10(1), 14 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Drakos, L. Andrioti-Petropoulou, V. Evageliou, I. Mandala, Physical and textural properties of biscuits containing jet milled rye and barley flour. J. Food Sci. Technol. 56, 367–375 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. H. Mamat, M.O.A. Hardan, S.E. Hill, Physicochemical properties of commercial semi-sweet biscuit. Food Chem. 121(4), 1029–1038 (2010)

    Article  CAS  Google Scholar 

  11. AOAC, Official Methods of Analysis of Association of Official Analytical Chemistry International, 18th ed. (Association of Analytical Communities Gaithersburg, 2005)

  12. A. Singh, S. Benjakul, N. Huda, Characteristics and nutritional value of biscuits fortified with debittered salmon (Salmo salar) frame hydrolysate. Int. J. Food Sci. Technol. 55(12), 3553–3562 (2020)

    Article  CAS  Google Scholar 

  13. EC Regulation, No 1169/2011 of the European Parliament of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and re (2018). OJEU 304, 18–63 (2011)

    Google Scholar 

  14. R. Kumari, V. Abhishek, M. Gupta, Nutritional, functional and textural properties of healthy snacks formulation from hulled and hull-less barley. J. Food Meas. Charact. 12, 1219–1228 (2018)

    Article  Google Scholar 

  15. S. Bhatt, B. Singh, M. Gupta, Antioxidant and prebiotic potential of Murraya koenigii and Brassica oleracea var. botrytis leaves as food ingredient. J. Agric. Food Res. 2, 100069 (2020)

    Google Scholar 

  16. R. Kumari, V. Abhishek, M. Gupta, In-vitro starch digestibility, nutritional-functional and texture properties of hull less barley incorporated extruded noodles. Vegetos 34, 205–211 (2021)

    Article  Google Scholar 

  17. H. Mamat, S.E. Hill, Effect of fat types on the structural and textural properties of dough and semi-sweet biscuit. J. Food Sci. Technol. 51, 1998–2005 (2014)

    Article  PubMed  Google Scholar 

  18. W. Wang, L. Jiang, Y. Ren, M. Shen, J. Xie, Gelling mechanism and interactions of polysaccharides from Mesona blumes: role of urea and calcium ions. Carbohydr. Polym. 212, 270–276 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. H. Rathore, S. Sehwag, S. Prasad, S. Sharma, Technological, nutritional, functional and sensorial attributes of the cookies fortified with Calocybe indica mushroom. J. Food Meas. Charact. 13, 976–987 (2019)

    Article  Google Scholar 

  20. N. Baliyan, K. Dindhoria, A. Kumar, A. Thakur, R. Kumar, Comprehensive substrate-based exploration of probiotics from undistilled traditional fermented alcoholic beverage ‘Lugri.’ Front. Microbiol. 12, 626964 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  21. D. Nag, A. Goel, Y. Padwad, D. Singh, In vitro characterisation revealed Himalayan dairy Kluyveromyces marxianus PCH397 as potential probiotic with therapeutic properties. Probiotics Antimicrob. Proteins 15(3), 761–773 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. A. Sharma, R. Sharma, D. Kumar, Y. Padwad, Berberis lycium Royle fruit extract mitigates oxi-inflammatory stress by suppressing NF-κB/MAPK signalling cascade in activated macrophages and Treg proliferation in splenic lymphocytes. Inflammopharmacology 28, 1053–1072 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. N.R. Galla, P.R. Pamidighantam, B. Karakala, M.R. Gurusiddaiah, S. Akula, Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 7, 20–26 (2017)

    Article  Google Scholar 

  24. S.H. Wani, A. Gull, F. Allaie, T.A. Safapuri, Effects of incorporation of whey protein concentrate on physicochemical, texture, and microbial evaluation of developed cookies. Cogent Food Agric. 1(1), 1092406 (2015)

    Article  Google Scholar 

  25. S.Y. Baljeet, B.Y. Ritika, L.Y. Roshan, Studies on functional properties and incorporation of buckwheat flour for biscuit making. Int. Food Res. J. 17(4), 1067–1076 (2010)

    CAS  Google Scholar 

  26. A.O. Oladunjoye, S.C. Eziama, O.R. Aderibigbe, Proximate composition, physical, sensory and microbial properties of wheat-hog plum bagasse composite cookies. LWT Food Sci. Technol. 141, 111038 (2021)

    Article  CAS  Google Scholar 

  27. D.E. Duta, A. Culetu, Evaluation of rheological, physicochemical, thermal, mechanical and sensory properties of oat-based gluten free cookies. J. Food Eng. 162, 1–8 (2015)

    Article  CAS  Google Scholar 

  28. A. Torbica, M. Hadnađev, T.D. Hadnađev, Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 48(1), 277–283 (2012)

    Article  Google Scholar 

  29. J. Klepacka, A. Najda, Effect of commercial processing on polyphenols and antioxidant activity of buckwheat seeds. Int. J. Food Sci. Technol. 56(2), 661–670 (2021)

    Article  Google Scholar 

  30. A. Hussain, R. Kaul, Formulation and characterization of buckwheat-barley supplemented multigrain biscuits. Curr. Res. Nutr. Food Sci. 6(3), 873–881 (2018)

    Article  Google Scholar 

  31. I. Sedej, A. Mandić, M. Sakač, A. Mišan, V. Tumbas, Comparison of antioxidant components and activity of buckwheat and wheat flours. Cereal Chem. 87(5), 387–392 (2010)

    Article  CAS  Google Scholar 

  32. M. Sakač, M. Pestorić, A. Mišan, N. Nedeljković, D. Jambrec, P. Jovanov et al., Antioxidant capacity, mineral content and sensory properties of gluten-free rice and buckwheat cookies. Food Technol. Biotechnol. 53(1), 38 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  33. S.P. Cauvain, L.S. Young, Bakery food manufacture and quality: water control and effects (Wiley, Ames, 2009)

    Google Scholar 

  34. M. Kaur, K.S. Sandhu, A. Arora, A. Sharma, Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: physicochemical and sensory properties. LWT Food Sci. Technol. 62(1), 628–632 (2015)

    Article  CAS  Google Scholar 

  35. N. Hussain, J. Ullah, E. Elahi, S. Ahmad, M. Zakaria, A. Murtaza et al., Development of buckwheat cookies supplemented with wheat flour. Biol. Sci. PJSIR 60(1), 27–35 (2017)

    Article  Google Scholar 

  36. L. Alvarez-Jubete, E.K. Arendt, E. Gallagher, Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 21(2), 106–113 (2010)

    Article  CAS  Google Scholar 

  37. C.E. Chinma, C.C. Ariahu, J.O. Abu, Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends. J. Food Sci. Technol. 50, 1179–1185 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. V. Raikos, M. Neacsu, W. Russell, G. Duthie, Comparative study of the functional properties of lupin, green pea, fava bean, hemp, and buckwheat flours as affected by pH. Food Sci. Nutr. 2(6), 802–810 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S.A. Wani, P. Kumar, Comparative study of chickpea and green pea flour based on chemical composition, functional and pasting properties. J. Food Res. Technol. 2(3), 124–129 (2014)

    ADS  Google Scholar 

  40. K. Christa, M. Soral-Śmietana, Buckwheat grains and buckwheat products–nutritional and prophylactic value of their components—a review Czech. J. Food Sci. 26(3), 153–162 (2008)

    CAS  Google Scholar 

  41. Z.L. Zhang, M.L. Zhou, Y. Tang, F.L. Li, Y.X. Tang, J.R. Shao et al., Bioactive compounds in functional buckwheat food. Food Res. Int. 49(1), 389–395 (2012)

    Article  CAS  Google Scholar 

  42. S. Yu, A. Prakash, B.L. Pora, J. Hasjim, Using buckwheat starch to produce slowly digestible biscuits with good palatability. Cereal Chem. 99(5), 1166–1177 (2022)

    Article  CAS  Google Scholar 

  43. S. Sehwag, M. Das, Composition and functionality of whole jamun based functional confection. J. Food Sci. Technol. 53, 2569–2579 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Chevallier, P. Colonna, A. Buleon, G. Della Valle, Physicochemical behaviors of sugars, lipids, and gluten in short dough and biscuit. J. Agric. Food Chem. 48(4), 1322–1326 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. J. Zhu, W. Liu, J. Yu, S. Zou, J. Wang, W. Yao, X. Gao, Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L. Carbohydr. Polym. 98(1), 8–16 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. J. Liu, F. Shang, Z. Yang, M. Wu, J. Zhao, Structural analysis of a homogeneous polysaccharide from Achatina fulica. Int. J. Biol. Macromol. 98, 786–792 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. M. Jia, Q. Yu, J. Chen, Z. He, Y. Chen, J. Xie, S. Nie, M. Xie, Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocoll. 99, 105349 (2020)

    Article  CAS  Google Scholar 

  48. M.B. Canalis, A.E. Leon, P.D. Ribotta, Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chem. 271, 309–317 (2019)

    Article  Google Scholar 

  49. D.P. Forero, J.G. Carriazo, C. Osorio, Effect of different drying methods on morphological, thermal, and biofunctional properties of lulo (Solanum quitoense Lam.) fruit powders. Drying Technol. 34(9), 1085–1094 (2016)

    Article  Google Scholar 

  50. Y. Wen, M. Niu, B. Zhang, S. Zhao, S. Xiong, Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT Food Sci. Technol. 75, 344–351 (2017)

    Article  CAS  Google Scholar 

  51. L. Yun, T. Wu, R. Liu, K. Li, M. Zhang, Structural variation and microrheological properties of a homogeneous polysaccharide from wheat germ. J. Agric. Food Chem. 66(11), 2977–2987 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. Z. Xue, Y. Chen, Y. Jia, Y. Wang, Y. Lu, H. Chen, M. Zhang, Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk.) Pegler residues. Food Hydrocoll. 95, 10–18 (2019)

    Article  CAS  Google Scholar 

  53. Z. Wang, S. Ma, B. Sun, F. Wang, J. Huang, X. Wang, Q. Bao, Effects of thermal properties and behavior of wheat starch and gluten on their interaction: a review. Int. J. Biol. Macromol. 177, 474–484 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. J.A. Giménez-Bastida, J.M. Laparra-Llopis, N. Baczek, H. Zielinski, Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food Funct. 9(6), 3387–3397 (2018)

    Article  PubMed  Google Scholar 

  55. S.A. Sofi, N. Ahmed, A. Farooq, S. Rafiq, S.M. Zargar, F. Kamran et al., Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: an updated overview. Food Sci. Nutr. 11(5), 2256–2276 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Author states our gratitude to the Director, CSIR-Institute of Himalayan Bioresource Technology for their precious implications and support. The authors are also thankful to the DST WOS-B Scheme for awarding the fellowship. The authors acknowledge Dr. Avnesh Kumari, senior technical officer, biotechnology division, CSIR-IHBT for carrying out SEM analysis. (CSIR-IHBT Manuscript No.: 5306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Gupta.

Ethics declarations

Competing interests

The authors declare that they do not have any known competing financial interests or personal relationships that could appear to have influenced the work reported in this paper.

Ethical approval

This is non interventional study, where sensory evaluation by volunteer panellists with a nine-point hedonic scale was performed. In that case, ethical approval is not required for hedonic scale sensory evaluation. The authors stated that this study is just to evaluate the overall acceptability of the product on a 0 to 9-point scale that exemption from ethics committee approval. This evaluation using appropriate protocols in the food products conducted on the fresh food formulation that all participants were aware for this execution of the research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Gupta, M. Explicating physicochemical, structural, anti-inflammatory properties and starch digestibility of buckwheat incorporated biscuit. Food Measure 18, 1786–1803 (2024). https://doi.org/10.1007/s11694-023-02270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02270-3

Keywords

Navigation