Skip to main content
Log in

Optimizing Spirulina platensis, Chlorella vulgaris microalgae and curcumin application in functional cheese production and investigating its physicochemical properties and sensory evaluation by RSM

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, Spirulina platensis and Chlorella vulgaris microalgae along with curcumin powder were used to enrich lactic cheese as this subject has not been preceded in the literature. To evaluate the characteristics of the enriched product, total phenolic content, antioxidant activity, iron content, cell viability due to the reduction of cytotoxic conditions and sensory evaluation were measured. Analyses of the raw materials showed that while the phenolic content was higher in curcumin and spirulina powder than chlorella (respectively), the latter showed higher antioxidant activity than the formers. These additives caused a synergistic effect and resulted in a significant increase in antioxidant activity, iron and total phenolic content of the fortified cheese. According to sensory evaluation, the cheese enriched with Spirulina platensis (3%), Chlorella vulgaris (1.467%) and curcumin (1%), optimized by RSM through targeting highest antioxidant activity and iron content, had a higher score than the control cheese. Cell viability assay proved the cheese with the above-mentioned formula could protect mesenchymal stem cells of human adipose tissue (AD-MSC) against cytotoxic conditions successfully. The outcome of this research opens a new horizon for the fortification of cheese with the natural ingredients, especially for the poor countries with the problem of nutritional contents in their staple food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data is available upon request to the corresponding author.

References

  1. A.K. Koyande, K.W. Chew, K. Rambabu, Y. Tao, D.T. Chu, P.L. Show, Microalgae: a potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 8(1), 16–24 (2019)

    Article  Google Scholar 

  2. S. Bleakley, M. Hayes, Algal proteins: extraction, application, and challenges concerning production. Foods 6(5), 33 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Van Krimpen, P. Bikker, I. van der Meer, C.C. van der Peet-Schwering, J.M. Vereijken, Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products (Wageningen UR Livestock Research, Wageningen, 2013)

    Google Scholar 

  4. M.P. Caporgno, A. Mathys, Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 5, 58 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. H. Beheshtipour, A.M. Mortazavian, R. Mohammadi, S. Sohrabvandi, K. Khosravi-Darani, Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 12(2), 144–154 (2013)

    Article  CAS  Google Scholar 

  6. B. Capelli, G.R. Cysewski, Potential health benefits of spirulina microalgae* a review of the existing literature. Nutrafoods 9(2), 19–26 (2010)

    Article  CAS  Google Scholar 

  7. R. Sathasivam, R. Radhakrishnan, A. Hashem, E.F. Abd_Allah, Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26(4), 709–722 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. V. Blas-Valdivia, R. Ortiz-Butrón, M. Pineda-Reynoso, A. Hernández-Garcia, E. Cano-Europa, Chlorella vulgaris administration prevents HgCl2-caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol. 23, 53–58 (2011)

    Article  Google Scholar 

  9. L. Barsanti, P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotechnology (CRC Press, Boca Raton, 2022)

    Google Scholar 

  10. R.E. Merchant, C.A. Andre, A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern. Ther. Health Med. 7(3), 79–92 (2001)

    CAS  PubMed  Google Scholar 

  11. M. Sardiñas-Valdés, J. Hernández-Becerra, H. García, A. Chay-Canul, J. Velázquez-Martínez, Ochoa-Flores, Physicochemical and sensory properties of Manchego-type cheese fortified with nanoemulsified curcumin. Int. Food Res. J. 28(2), 326–336 (2021)

    Article  Google Scholar 

  12. L. Varga, J. Szigeti, R. Kovács, T. Földes, S. Buti, Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). J. Dairy Sci. 85(5), 1031–1038 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. A.G. Mohamed, B. El-Salam, W. Gafour, Quality characteristics of processed cheese fortified with Spirulina powder. Pak. J. Biol. Sci. 23(4), 533–541 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. M.M. Tohamy, M.A. Ali, H.A.G. Shaaban, A.G. Mohamad, A.M. Hasanain, Production of functional spreadable processed cheese using Chlorella vulgaris. Acta Sci. Pol. Technol. Aliment. 17(4), 347–358 (2018)

    CAS  PubMed  Google Scholar 

  15. F. Shahdadi, H. Doumari, S.H. Nejad Sajadi, A. Rafieepour, A. Mahdavinia, R. Ezzati, Effect of Pistacia atlantica powder and extract on the growth of Aspergillus flavus and Aspergillus niger in lactic cheese. J. Food Sci. Technol. (Iran) 16(95), 53–62 (2019)

    Article  Google Scholar 

  16. AACC, Approved Methods of the American Association of Cereal Chemists, 11th edn. (AACC, St. Paul, 2000)

    Google Scholar 

  17. S.E. Bilek, S.K. Bayram, Fruit juice drink production containing hydrolyzed collagen. J. Funct. Foods 14, 562–569 (2015)

    Article  CAS  Google Scholar 

  18. K.H. Wern, H. Haron, C.B. Keng, Comparison of total phenolic contents (TPC) and antioxidant activities of fresh fruit juices, commercial 100% fruit juices and fruit drinks. Sains Malays. 45(9), 1319–1327 (2016)

    CAS  Google Scholar 

  19. Y. Deng, G. Zhao, K. Cheng, C. Shi, G. Xiao, Effect of apple polyphenols on the antioxidant activity and structure of three-dimensional printed processed cheese. Foods 12(8), 1731 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Eslami-Moshkenani, V.F. Noghani, K. Khosravi-Darani, Application of Arthrospira platensis (Spirulina) biomass to improve properties of probiotic doogh production of sinbiotic doogh. Agro Food Ind. Hi Tech. 27(5), 29–32 (2016)

    Google Scholar 

  21. S. Dehghani, L. Rouhi, N. Ziya Jahromi, R. Dehghani, K. Khashei Varnamkhasti, The antioxidant effects of ginger extract on bioavailability and oxidative stress-induced apoptosis in mesenchymal stem cells of human adipose tissue and rat bone marrow. J. Arak Univ. Med. Sci. 1(2), 216–229 (2021)

    Article  Google Scholar 

  22. S. Aryan, A.A. Hosseini, R. Mohammadi, S. Moradi, E. Sadeghi, Y. Pasdar, Optimization of inulin extracted with ultrasonic-assisted from Ornithogalum arcuatum Liliaceae Stev. as a new source by response surface methodology. Curr. Nutr. Food Sci. 14(5), 414–421 (2018)

    Article  CAS  Google Scholar 

  23. X.C. Zhao, X.B. Tan, L.B. Yang, J.Y. Liao, X.Y. Li, Cultivation of Chlorella pyrenoidosa in anaerobic wastewater: the coupled effects of ammonium, temperature and pH conditions on lipids compositions. Bioresour. Technol. 284, 90–97 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. N.K. AlFadhly, N. Alhelfi, A.B. Altemimi, D.K. Verma, F. Cacciola, A. Narayanankutty, Trends and technological advancements in the possible food applications of Spirulina and their health benefits. Rev. Mol. 27(17), 5584 (2022)

    Article  CAS  Google Scholar 

  25. T. Winarni Agustini, W.F. Ma’ruf, W. Widayat, M. Suzery, H. Hadiyanto, S. Benjakul, Application of Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory perspectives. Jurnal Teknologi 78(4–2), 245–251 (2016)

    Google Scholar 

  26. Q. Zhang, Z. Cheng, Y. Wang, L. Fu, Dietary protein–phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Crit. Rev. Food Sci. Nutr. 25(21), 3589–3615 (2021)

    Article  Google Scholar 

  27. R. Lousada Falcão, V. Pinheiro, C. Ribeiro, I. Sousa, A. Raymundo, M.C. Nunes, Nutritional improvement of fresh cheese with microalga Chlorella vulgaris: impact on composition, structure and sensory acceptance. Food Technol. Biotechnol. 29(2), 259–270 (2023)

    Article  Google Scholar 

  28. I.H. Ali, A. Doumandji, Comparative Phytochemical Analysis and In Vitro Antimicrobial Activities of the Cyanobacterium Spirulina Platensis and the Green alga Chlorella pyrenoidosa: Potential Application of Bioactive Components as an Alternative to Infectious Diseases, Section Sciences de la Vie vol. 39 (Bulletin de l’Institut Scientifique, Rabat, 2017), pp. 41–49

  29. S.K. Borra, P. Gurumurthy, J. Mahendra, K.M. Jayamathi, C.N. Cherian, R. Chand, Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J. Med. Plant. Res. 7(36), 2680–2690 (2013)

    CAS  Google Scholar 

  30. P. Malik, T.K. Mukherjee, Structure-function elucidation of antioxidative and prooxidative activities of the polyphenolic compound curcumin. Chin. J. Biol. (2014). https://doi.org/10.1155/2014/396708

    Article  Google Scholar 

  31. P. Venkatesan, M.N.A. Rao, Structure–activity relationships for the inhibition of lipid peroxidation and the scavenging of free radicals by synthetic symmetrical curcumin analogues. J. Pharm. Pharmacol. 18(9), 1123–1128 (2010)

    Article  Google Scholar 

  32. Q.T. Zheng, Z.H. Yang, L.Y. Yu, Y.Y. Ren, Q.X. Huang, Q. Liu et al., Synthesis and antioxidant activity of curcumin analogs. J. Asian Nat. Prod. Res. 19(5), 489–503 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. A.S. Gad, Y.A. Khadrawy, A.A. El-Nekeety, S.R. Mohamed, N.S. Hassan, M.A. Abdel-Wahhab, Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 27(5), 582–589 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. A.A. Atallah, O.M. Morsy, D.G. Gemiel, Characterization of functional low-fat yogurt enriched with whey protein concentrate, Ca-caseinate and spirulina. Int. J. Food Prop. 23(1), 1678–1691 (2020)

    Article  CAS  Google Scholar 

  35. M. Yu, M. Chen, J. Gui, S. Huang, Y. Liu, H. Shentu et al., Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int. J. Biol. Macromol. 137, 139–150 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. A. Jayshree, S. Jayashree, N. Thangaraju, Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 78(5), 575–581 (2016)

    Article  CAS  Google Scholar 

  37. M.C. Nunes, I. Fernandes, I. Vasco, I. Sousa, A. Raymundo, Tetraselmis chuii as a sustainable and healthy ingredient to produce gluten-free bread: impact on structure, colour and bioactivity. Foods 9(5), 579 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S.M. Hoseini, K. Khosravi-Darani, M.R. Mozafari, Nutritional and medical applications of spirulina microalgae. Mini-Rev. Med. Chem. 13(8), 1231–1237 (2013)

    Article  CAS  Google Scholar 

  39. C. Safi, B. Zebib, O. Merah, P.Y. Pontalier, C. Vaca-Garcia, Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew. Sustain. Energy Rev. 35, 265–278 (2014)

    Article  Google Scholar 

  40. S. Mazinani, V. Fadaei, K. Khosravi-Darani, Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. J. Food Process. Preserv. 40, 1318–1324 (2016)

    Article  CAS  Google Scholar 

  41. A.M.I. Darwish, Physicochemical properties, bioactive compounds and antioxidant activity of Kareish cheese fortified with Spirulina platensis. World J. Dairy Food Sci. 12, 71–78 (2017)

    Google Scholar 

  42. M.C. Kou, S.Y. Chiou, C.Y. Weng, L. Wang, C.T. Ho, M.J. Wu, Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Mol. Nutr. Food Res. 57(9), 1598–610 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. N. Huma, S. Rafiq, A. Sameen, I. Pasha, M.I. Khan, Antioxidant potential of buffalo and cow milk cheddar cheeses to tackle human colon adenocarcinoma (Caco-2) cells. Asian-Australas. J. Anim. Sci. 31(2), 287 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. N. Xie, C. Wang, J. Ao, B. Li, Non-gastrointestinal-hydrolysis enhances bioavailability and antioxidant efficacy of casein as compared with its in vitro gastrointestinal digest. Food Res. Int. 51(1), 114–122 (2013)

    Article  CAS  Google Scholar 

  45. X. Qin, K. Zhang, Y. Fan, H. Fang, Y. Nie, X.L. Wu, The bacterial MtrAB two-component system regulates the cell wall homeostasis responding to environmental alkaline stress. Microbiol. Spectr. 26(5), e02311–e02322 (2022)

    Google Scholar 

  46. M.J. García-Nebot, I. Recio, B. Hernández-Ledesma, Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food Chem. Toxicol. 65, 155–161 (2014)

    Article  PubMed  Google Scholar 

  47. Z. Azarashkan, S. Farahani, A. Abedinia, M. Akbarmivehie, A. Motamedzadegan, J. Heidarbeigi, A.A. Hayaloğlu, Co-encapsulation of broccoli sprout extract nanoliposomes into basil seed gum: effects on in vitro antioxidant, antibacterial and anti-listeria activities in ricotta cheese. Int. J. Food Microbiol. 2, 376 (2022)

    Google Scholar 

Download references

Acknowledgements

The Authors are thankful to Mihan Dairy City Company for their contribution in providing raw materials of cheese samples.

Author information

Authors and Affiliations

Authors

Contributions

SJ and SAMN conceptualized this study and designed the experiments. SA and HM performed the experiments. SA analyzed the data and wrote the original draft. DD co-wrote the paper. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Shirin Jalili or Sina Aryan.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest for this article.

Ethical approval

Procedures with participation of humans were approved by “Shahid Beheshti University of Medical Sciences Ethics Committee”, having the Approval Number of IR.SBMU.TEB.POLICE.REC.1402.026.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, S., Aryan, S., Mousavinezhad, S.A. et al. Optimizing Spirulina platensis, Chlorella vulgaris microalgae and curcumin application in functional cheese production and investigating its physicochemical properties and sensory evaluation by RSM. Food Measure 18, 1144–1157 (2024). https://doi.org/10.1007/s11694-023-02231-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02231-w

Keywords

Navigation