Skip to main content
Log in

Preparation of poly (vinyl alcohol)/microcrystalline cellulose composite film and its application for the preservation of Lanzhou lily (Lilium davidii var. unicolor)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this research, microcrystalline celluloses (MCC) extracted from Jerusalem artichoke stalk, Sweet sorghum stalk, Distiller’s grains, and Chinese herb residue were respectively incorporated with poly (vinyl alcohol) (PVA) to prepare the biodegradable composite films for the preservation of Lanzhou lily. The effects of different MCC sources and contents on the physicochemical properties of composite films were investigated. The crosslinking of four kinds of obtained MCCs with PVA could significantly improve the thermal stability and UV–Vis barrier property of PVA film. When the amount of MCC was 5%, the decrease of PVA/CHRMCC composite film was the largest among the four films, which was 30.97%. In the second stage of thermal decomposition, the decomposition temperature of MCC/PVA composite film is lower than that of pure PVA film (233.12 °C). A majority of PVA/MCC composite films have good mechanical properties and flat surface, especially the composite films fabricated with 5% MCC, which was elected for subsequent preservation of lily bulbs. Lily bulbs packaged with PVA/MCC composite films demonstrated enhanced preservation efficacy. This is attributed to the film’s ability to slow down respiration and decrease enzyme activity. Notably, by the end of the 12th day of storage, the PPO activity in lily bulbs wrapped with MCC/PVA was approximately 29% less than that of the control group. This can be ascribed to the film’s capability in inhibiting gas exchange and the accumulation of malondialdehyde. Moreover, PVA/CHRMCC composite film was recommend based on subordinate function method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. H. Hui, X. Li, H. Jin, X. Yang, A. Xin, R. Zhao, B. Qin, Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor cotton. Int. J. Biol. Macromol. 133, 306–315 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.082

    Article  CAS  PubMed  Google Scholar 

  2. X. Li, W. Gao, Q. Jiang, Y. Xia, Physicochemical, morphological, and thermal properties of starches separated from bulbs of four Chinese lily cultivars. Starch—Stärke. 64(7), 545–551 (2012). https://doi.org/10.1002/star.201100189

    Article  CAS  Google Scholar 

  3. E. Lee, N. Yun, Y. Jang, J. Kim, Lilium lancifolium Thunb. extract attenuates pulmonary inflammation and air space enlargement in a cigarette smoke-exposed mouse model. J. Ethnopharmacol. 149(1), 148–156 (2013). https://doi.org/10.1016/j.saa.2020.118837

    Article  CAS  PubMed  Google Scholar 

  4. L. Barbosa-Pereira, I. Angulo, J.M. Lagarón, P. Paseiro-Losada, J.M. Cruz, Development of new active packaging films containing bioactive nanocomposites. Innov. Food Sci. Emerg. Technol. 26, 310–318 (2014). https://doi.org/10.1016/j.ifset.2014.06.002

    Article  CAS  Google Scholar 

  5. W. Li, Y. Wang, H. Wei, Y. Zhang, Z. Guo, Y. Qiu, L. Wen, Z. Xie, Structural characterization of Lanzhou lily (Lilium davidiivar, unicolor) polysaccharides and determination of their associated antioxidant activity. J. Sci. Food Agric. 100(15), 5603–5616 (2020). https://doi.org/10.1002/jsfa.10613

    Article  CAS  PubMed  Google Scholar 

  6. H. Ren, Z. Xu, M. Gao, X. Xing, Z. Ling, L. Pan, Y. Tian, Y. Zheng, W. Fan, W. Yang, Preparation of microcrystalline cellulose from agricultural residues and their application as polylactic acid/microcrystalline cellulose composite films for the preservation of Lanzhou lily. Int. J. Biol. Macromol. 227, 827–838 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.198

    Article  CAS  PubMed  Google Scholar 

  7. X. Zhou, Y. Xiao, X. Meng, B. Liu, Full inhibition of Whangkeumbae pear polyphenol oxidase enzymatic browning reaction by l-cysteine. Food Chem. 266, 1–8 (2018). https://doi.org/10.1016/j.foodchem.2018.05.086

    Article  CAS  PubMed  Google Scholar 

  8. S. Kang, Y. Xiao, X. Guo, A. Huang, H. Xu, Development of gum arabic-based nanocomposite films reinforced with cellulose nanocrystals for strawberry preservation. Food Chem. 350, 129199 (2021). https://doi.org/10.1016/j.foodchem.2021.129199

    Article  CAS  PubMed  Google Scholar 

  9. W. Lan, S. Wang, M. Chen, D. Sameen, K. Lee, Y. Liu, Developing poly (vinyl alcohol)/chitosan films incorporate with d-limonene: study of structural, antibacterial, and fruit preservation properties. Int. J. Biol. Macromol. 145, 722–732 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.230

    Article  CAS  PubMed  Google Scholar 

  10. R. Bortolatto, P.S. Bittencourt, F. Yamashita, Biodegradable starch/polyvinyl alcohol composites produced by thermoplastic injection containing cellulose extracted from soybean hulls (Glycine max L.). Indus. Crops Prod. 176, 114383 (2022). https://doi.org/10.1016/j.indcrop.2021.114383

    Article  CAS  Google Scholar 

  11. Y. Ye, F. Zeng, M. Zhang, S. Zheng, J. Li, P. Fei, Hydrophobic edible composite packaging membrane based on low-methoxyl pectin/chitosan: effects of lotus leaf cutin. Food Packag. Shelf Life 26, 100592 (2020). https://doi.org/10.1016/j.fpsl.2020.100592

    Article  Google Scholar 

  12. X. Sun, C. Lu, Y. Liu, W. Zhang, X. Zhang, Melt-processed poly (vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohyd. Polym. 101, 642–649 (2014). https://doi.org/10.1016/j.carbpol.2013.09.088

    Article  CAS  Google Scholar 

  13. A. Alemdar, M. Sain, Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos. Sci. Technol. 68(2), 557–565 (2008). https://doi.org/10.1016/j.compscitech.2007.05.044

    Article  CAS  Google Scholar 

  14. K. Das, D. Ray, N.R. Bandyopadhyay, S. Sengupta, Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J. Polym. Environ. 18(3), 355–363 (2010). https://doi.org/10.1007/s10924-010-0167-2

    Article  CAS  Google Scholar 

  15. S. Ventura-Cruz, A. Tecante, Nanocellulose and microcrystalline cellulose from agricultural waste: review on isolation and application as reinforcement in polymeric matrices. Food Hydrocoll. 118(4), 106771 (2021). https://doi.org/10.1016/j.foodhyd.2021.106771

    Article  CAS  Google Scholar 

  16. J. Baruah, R.C. Deka, E. Kalita, Greener production of microcrystalline cellulose (MCC) from saccharum spontaneum (kans grass): statistical optimization. Int. J. Biol. Macromol. 154, 672–682 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.158

    Article  CAS  PubMed  Google Scholar 

  17. M.S. Hasanin, N. Kassem, M.L. Hassan, Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01423-y

    Article  Google Scholar 

  18. J. Jiang, L. Gong, Q. Dong, Y. Kang, L. Li, Characterization of PLA-P3, 4HB active film incorporated with essential oil: application in peach preservation. Food Chem. 313, 126134 (2019). https://doi.org/10.1016/j.foodchem.2019.126134

    Article  CAS  PubMed  Google Scholar 

  19. T. Jiang, Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biol. Technol. 76, 91–97 (2013). https://doi.org/10.1016/j.postharvbio.2012.09.005

    Article  CAS  Google Scholar 

  20. D. Huang, W. Li, M.M. Dawuda, J. Huo, W. Liao, Hydrogen sulfide reduced colour change in Lanzhou lily-bulb scales. Postharvest Biol. Technol. 176, 111520 (2021). https://doi.org/10.1016/j.postharvbio.2021.111520

    Article  CAS  Google Scholar 

  21. C. Zhang, Z. Yang, J. Shi, X. Zou, X. Zhai, X. Huang, Z. Li, M. Holmes, M. Daglia, J. Xiao, Physical properties and bioactivities of chitosan/gelatin-based films loaded with tannic acid and its application on the preservation of fresh-cut apples. LWT Food Science and Technology 144, 111223 (2021). https://doi.org/10.1016/j.lwt.2021.111223

    Article  CAS  Google Scholar 

  22. C. Liu, Z. Yang, Y. Hu, Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crop Res 179, 103–112 (2015). https://doi.org/10.1016/j.fcr.2015.04.016

    Article  Google Scholar 

  23. B. Priya, V.K. Gupta, D. Pathania, A.S. Singha, Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohyd. Polym. 109, 171–179 (2014). https://doi.org/10.1016/j.carbpol.2014.03.044

    Article  CAS  Google Scholar 

  24. M. Atef, M. Rezaei, R. Behrooz, Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Int. J. Biol. Macromol. 70, 537–544 (2014). https://doi.org/10.1016/j.ijbiomac.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  25. Q. Chen, Y. Shi, G. Chen, M. Cai, Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. Int. J. Biol. Macromol. 142, 846–854 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.024

    Article  CAS  PubMed  Google Scholar 

  26. R.D. Kale, V.G. Gorade, N. Madye, B. Chaudhary, P.S. Bangde, P.P. Dandekar, Preparation and characterization of biocomposite packaging film from poly (lactic acid) and acylated microcrystalline cellulose using rice bran oil. Int. J. Biol. Macromol. 118, 1090–1102 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.076

    Article  CAS  PubMed  Google Scholar 

  27. X. Yao, J. Liu, H. Hu, D. Yun, J. Liu, Development and comparison of different polysaccharide/PVA-based active/intelligent packaging films containing red pitaya betacyanins. Food Hydrocoll. 124, 107305 (2021). https://doi.org/10.1016/j.foodhyd.2021.107305

    Article  CAS  Google Scholar 

  28. S. Naduparambath, M.P. Sreejith, V. Shaniba, A.K. Balan, T.V. Jinitha, E. Purushothaman, Poly (vinyl alcohol) green composites reinforced with microcrystalline cellulose through sonication. Mater. Today Proc. 5(8), 16411–16417 (2018). https://doi.org/10.1016/j.matpr.2018.05.139

    Article  CAS  Google Scholar 

  29. C. López-de-Dicastillo, J.M. Alonso, R. Catalá, R. Gavara, P. Hernández-Muñoz, Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. J. Agric. Food Chem. 58(20), 10958–10964 (2010). https://doi.org/10.1021/jf1022324

    Article  CAS  PubMed  Google Scholar 

  30. M. Jonoobi, A. Khazaeian, P.M. Tahir, S.S. Azry, K. Oksman, Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18(4), 1085–1095 (2011). https://doi.org/10.1007/s10570-011-9546-7

    Article  CAS  Google Scholar 

  31. O.B. Sogvar, M.K. Saba, A. Emamifar, Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 114, 29–35 (2016). https://doi.org/10.1016/j.postharvbio.2015.11.019

    Article  CAS  Google Scholar 

  32. X. Dong, X. Liang, Y. Zhou, K. Bao, Y. Liu, Preparation of polylactic acid/TiO2/GO nano-fibrous films and their preservation effect on green peppers. Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.125

    Article  PubMed  PubMed Central  Google Scholar 

  33. W. Oyom, Z. Zhang, Y. Bi, R. Tahergorabi, Application of starch-based coatings incorporated with antimicrobial agents for preservation of fruits and vegetables: a review. Prog. Org. Coat. 166, 106800 (2022). https://doi.org/10.1016/j.porgcoat.2022.106800

    Article  CAS  Google Scholar 

  34. R.J.P.P. Pressey, Anions activate the oxidation of indoleacetic acid by peroxidases from tomato and other sources. Plant Physiol. 93(2), 798–804 (1990). https://doi.org/10.1104/pp.93.2.798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S.A. Shehata, T.M. El-Sheikh, M.E. Mohamed, M.A. Saleh, Effect of some pre- and postharvest treatments on browning inhibition in fresh cut lettuce during cold storage. J. Appl. Sci. Res. 8(1), 25–33 (2012)

    Google Scholar 

  36. A.B. Cabezas-Serrano, M.L. Amodio, G. Colelli, Effect of solution pH of cysteine-based pre-treatments to prevent browning of fresh-cut artichokes. Postharvest Biol. Technol. 75, 17–23 (2013). https://doi.org/10.1016/j.postharvbio.2012.07.006

    Article  CAS  Google Scholar 

  37. F. Jiang, L. Zhou, W. Zhou, Z. Zhong, K. Yu, J. Xu, L. Zou, W. Liu, Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT-Food Sci. Technol. 162, 113513 (2022). https://doi.org/10.1016/j.lwt.2022.113513

    Article  CAS  Google Scholar 

  38. H.M. Kang, M.E. Saltveit, Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 50(26), 7536–7541 (2002). https://doi.org/10.1021/jf020721c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51666010, 31960491), Key Project of Natural Science Foundation of Gansu Province (Grant No. 21JR7RA203), Natural Science Foundation of Gansu Province (Grant Nos. 20JR10RA159, 23JRRA826), Intellectual property program of Gansu Province (Grant Nos. 20ZSCQ039 and 21ZSCQ073), Red Willow First-class Discipline (Grant No. 0807J1), and Distinguished Young Cultivation of Lanzhou University of Technology (Grant No. JQ2020).

Author information

Authors and Affiliations

Authors

Contributions

Haiwei Ren: Conceptualization, Methodology, Project administration, Writing—review & editing, Funding acquisition. Shiyu Zheng: Software, Investigation, Data curation, Writing—original draft, Formal analysis. Ming Gao: Methodology, Investigation, Data curation. Lichao Pan: Validation, Formal analysis, Resources. Weixia Yang: Formal analysis, Resources, Writing—review & editing. Xueye Xing: Investigation, Data curation, Visualization. Zhe Ling: Structural Analysis, Resources, Supervision. Wenguang Fan: Validation, Supervision. Yaqin Tian: Writing—review & editing, Resources. Yi Zheng: Writing—review & editing.

Corresponding authors

Correspondence to Weixia Yang or Wenguang Fan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Zheng, S., Gao, M. et al. Preparation of poly (vinyl alcohol)/microcrystalline cellulose composite film and its application for the preservation of Lanzhou lily (Lilium davidii var. unicolor). Food Measure 18, 1190–1203 (2024). https://doi.org/10.1007/s11694-023-02229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02229-4

Keywords

Navigation