Skip to main content
Log in

Bioactive peptides derived from quinoa protein: fabrication, antioxidant activities, and in vitro digestion profiles

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Quinoa protein is increasingly being used a source of plant protein in the food industry because of its high nutrient value, good digestibility, and gluten-free nature. However, its widespread application in the food industry is currently restricted due to its poor water solubility and limited functionality. Controlled enzymatic hydrolysis can improve the functional attributes of plant proteins. Consequently, the objective of this study was to produce bioactive peptides from quinoa protein by enzymatic hydrolysis. The suitability of five commercial proteases were assessed for this purpose: alcalase, compound protease, neutral protease, flavourzyme, and papain. The antioxidant activity and digestion properties of the peptides produced were analyzed. Alcalase was the most efficient enzyme for treating quinoa protein, as it produced the highest degree of hydrolysis, nitrogen recovery rate, and antioxidant activity. Amino acid analysis indicated that quinoa peptides contained all the essential amino acids required for human nutrition, as well as a high level of hydrophobic amino acids, which may provide strong antioxidant activity. In vitro digestion analysis showed that the quinoa peptides exhibited strong resistance to hydrolysis in the stomach but were hydrolyzed in the small intestine. After simulated gastrointestinal digestion, the peptides still exhibited high antioxidant activity. This study therefore suggests that bioactive peptides derived from quinoa protein could be utilized as bioactive ingredients to formulate functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Abeynayake, S. Zhang, W. Yang, L. Chen, Development of antioxidant peptides from brewers’ spent grain proteins. LWT. 158, 113162 (2022)

    Article  CAS  Google Scholar 

  2. M.S. Kumar, Peptides and Peptidomimetics as potential antiobesity agents: overview of current status. Front. Nutr. 6, 11 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. T. Li, X. Zhang, Y. Ren, Y. Zeng, Q. Huang, C. Wang, Antihypertensive effect of soybean bioactive peptides: a review. Curr. Opin. Pharmacol. 62, 74–81 (2022)

    Article  CAS  PubMed  Google Scholar 

  4. D. Lozano-Ojalvo, R. López-Fandiño, Immunomodulating peptides for food allergy prevention and treatment. Crit. Rev. Food Sci. Nutr. 58(10), 1629–1649 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. B. Mousavi, M.-H. Azizi, S. Abbasi, Antidiabetic bio-peptides of soft and hard wheat glutens. Food Chem. 4, 100104 (2022)

    CAS  Google Scholar 

  6. F. Rivero-Pino, M.J. Leon, M.C. Millan-Linares, S. Montserrat-de la Paz, Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci. Technol. 135, 32–42 (2023)

  7. W. Wongngam, A. Hamzeh, F. Tian, S. Roytrakul, J. Yongsawatdigul, Purification and molecular docking of angiotensin converting enzyme-inhibitory peptides derived from corn gluten meal hydrolysate and from in silico gastrointestinal digestion. Process. Biochem. 129, 113–120 (2023)

    Article  CAS  Google Scholar 

  8. S. Lyu, M. Chen, Y. Wang, D. Zhang, S. Zhao, J. Liu, F. Pan, T. Zhang, Foaming properties of egg white proteins improved by enzymatic hydrolysis: the changes in structure and physicochemical properties. Food Hydrocoll. 141, 108681 (2023)

    Article  CAS  Google Scholar 

  9. Y. Lv, L. Chen, F. Liu, F. Xu, F. Zhong, Improvement of the encapsulation capacity and emulsifying properties of soy protein isolate through controlled enzymatic hydrolysis. Food Hydrocoll. 138, 108444 (2023)

    Article  CAS  Google Scholar 

  10. G. Liang, W. Chen, X. Qie, M. Zeng, F. Qin, Z. He, J. Chen, Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties. Food Hydrocoll. 105, 105764 (2020)

    Article  Google Scholar 

  11. V. Perreault, L. Hénaux, L. Bazinet, A. Doyen, Pretreatment of flaxseed protein isolate by high hydrostatic pressure: impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 221, 1805–1812 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. B. Qian, X. Zhao, Y. Yang, C. Tian, Antioxidant and anti-inflammatory peptide fraction from oyster soft tissue by enzymatic hydrolysis. Food Sci. Nutr. 8(7), 3947–3956 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.G. d., S. Aguilar, V. Granato Cason, R.J.S. Castro, Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. Int. J. Food Sci. Technol. 54(1), 34–41 (2019)

    Article  Google Scholar 

  14. M. Galante, R. De Flaviis, V. Boeris, D. Spelzini, Effects of the enzymatic hydrolysis treatment on functional and antioxidant properties of quinoa protein acid-induced gels. LWT. 118, 108845 (2020)

    Article  CAS  Google Scholar 

  15. R. Vilcacundo, B. Hernández-Ledesma, Nutritional and biological value of quinoa (Chenopodium quinoa Willd). Curr. Opin. Food Sci. 14, 1–6 (2017)

    Article  Google Scholar 

  16. S. Jaikishun, W. Li, Z. Yang, S. Song, Quinoa: In perspective of global challenges (Review). Agronomy. 9(4), 176 (2019)

  17. S. Dakhili, L. Abdolalizadeh, S.M. Hosseini, S. Shojaee-Aliabadi, L. Mirmoghtadaie, Quinoa protein: composition, structure and functional properties. Food Chem. 299, 125161 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. M.J. Kozioł, Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd). J. Food Compost Anal. 5(1), 35–68 (1992)

    Article  Google Scholar 

  19. E.B. Craine, K.M. Murphy, Corrigendum: seed composition and amino acid profiles for Quinoa grown in Washington State. Front. Nutr. 7, 605674 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. S.R. Hertzler, J.C. Lieblein-Boff, M. Weiler, C. Allgeier, Plant proteins: assessing their nutritional quality and effects on health and physical function. Nutrients. 12, 3704 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Shi, Y. Hao, C. Teng, Y. Yao, G. Ren, Functional properties and adipogenesis inhibitory activity of protein hydrolysates from quinoa (Chenopodium quinoa Willd). Food Sci. Nutr. 7(6), 2103–2112 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Abbasi, M. Moslehishad, M. Salami, Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int. J. Biol. Macromol. 213, 602–609 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. H. Daliri, R. Ahmadi, A. Pezeshki, H. Hamishehkar, M. Mohammadi, H. Beyrami, M. Khakbaz Heshmati, M. Ghorbani, Quinoa bioactive protein hydrolysate produced by pancreatin enzyme- functional and antioxidant properties. LWT. 150, 111853 (2021)

    Article  CAS  Google Scholar 

  24. P. Mudgil, B.P. Kilari, H. Kamal, O.A. Olalere, R.J. FitzGerald, C.-Y. Gan, S. Maqsood, Multifunctional bioactive peptides derived from quinoa protein hydrolysates: inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J. Cereal Sci. 96, 103130 (2020)

    Article  CAS  Google Scholar 

  25. H. Zhou, B. Safdar, H. Li, L. Yang, Z. Ying, X. Liu, Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chem. 403, 134434 (2023)

    Article  CAS  PubMed  Google Scholar 

  26. H. You, T. Wu, W. Wang, Y. Li, X. Liu, L. Ding, Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res. Int. 156, 111176 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. R. Chirinos, R. Pedreschi, M. Velásquez-Sánchez, A. Aguilar-Galvez, D. Campos, In vitro antioxidant and angiotensin I-converting enzyme inhibitory properties of enzymatically hydrolyzed quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) proteins. Cereal Chem. 97(5), 949–957 (2020)

    Article  CAS  Google Scholar 

  28. A.M. Nisar, S.R. Charanjit, S. Sukhcharn, Effect of pH and holding time on the characteristics of protein isolates from Chenopodium seeds and study of their amino acid profile and scoring. Food Chem. 272, 165–173 (2019)

    Article  Google Scholar 

  29. P. Mudgil, L.S. Omar, H. Kamal, B.P. Kilari, S. Maqsood, Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT. 110, 207–213 (2019)

    Article  CAS  Google Scholar 

  30. L. Gu, H. Jiao, D.J. McClements, M. Ji, J. Li, C. Chang, S. Dong, Y. Su, Y. Yang, Improvement of egg yolk powder properties through enzymatic hydrolysis and subcritical fluid extraction. LWT. 150, 112075 (2021)

    Article  CAS  Google Scholar 

  31. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9), 1231–1237 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. I.C. Sheih, T.-K. Wu, T.J. Fang, Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol. 100(13), 3419–3425 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. J. Long, F. Wang, A. Jiao, X. Xu, Z. Xie, Z. Jin, Preparation, characterization and physicochemical properties of novel low-phosphorus egg yolk protein. J. Sci. Food Agr. 99(4), 1740–1747 (2019)

    Article  CAS  Google Scholar 

  34. M. Huang, P. Liu, S. Song, X. Zhang, K. Hayat, S. Xia, C. Jia, F. Gu, Contribution of sulfur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates. J. Sci. Food Agr. 91(4), 710–720 (2011)

    Article  CAS  Google Scholar 

  35. L. Gu, Y. Su, Z. Zhang, B. Zheng, R. Zhang, D.J. McClements, Y. Yang, Modulation of lipid digestion profiles using filled Egg White Protein Microgels. J. Agr Food Chem. 65(32), 6919–6928 (2017)

    Article  CAS  Google Scholar 

  36. S. Tang, X. Zhou, M. Gouda, Z. Cai, Y. Jin, Effect of enzymatic hydrolysis on the solubility of egg yolk powder from the changes in structure and functional properties. LWT. 110, 214–222 (2019)

    Article  Google Scholar 

  37. T. Kodera, M. Asano, N. Nio, Characteristic property of low bitterness in protein hydrolysates by a novel soybean protease D3. J. Food Sci. 71(9), S609–S614 (2006)

    Article  CAS  Google Scholar 

  38. M. Tomita, W. Bellamy, M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase, Potent antibacterial peptides generated by Pepsin digestion of Bovine Lactoferrin. J. Dairy. Sci. 74(12), 4137–4142 (1991)

    Article  CAS  PubMed  Google Scholar 

  39. J. Zheng, T. Bu, L. Liu, G. He, S. Li, J. Wu, Naturally occurring low molecular peptides identified in egg white show antioxidant activity. Food Res. Int. 138, 109766 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. L. Zhu, J. Chen, X. Tang, Y.L. Xiong, Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J. Agr Food Chem. 56(8), 2714–2721 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFD2101004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujie Su or Yanjun Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Peng, N., Chen, S. et al. Bioactive peptides derived from quinoa protein: fabrication, antioxidant activities, and in vitro digestion profiles. Food Measure 18, 894–903 (2024). https://doi.org/10.1007/s11694-023-02212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02212-z

Keywords

Navigation