Skip to main content

Advertisement

Log in

Formula optimization and in vitro lipid reducing activity evaluation of nutritious rice bran meal replacement powder

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Based on the rice bran instant powder obtained by enzymolysis and spray drying of rice bran in the earlier stage, this study investigated the effects of the addition of soybean protein, konjac flour and vanillin on the pancreatic lipase inhibition rate, sodium cholate adsorption rate, water absorption index, water solubility index and electronic tongue intelligent sense of meal substitute powder, and finally established the best formula of rice bran nutritional meal substitute powder. The meal substitute powder has the characteristics of high protein (32.31 ± 0.12%), low fat (1.76 ± 0.11%), low carbohydrate (35.91 ± 0.58%), low energy (288.72 ± 0.47 kcal), balanced nutrition, and strong antioxidation. The in vitro hypolipidemic activity showed that the in vitro digestion of ice bran meal replacement powder could significantly reduce the triglyceride, total sterol, and low-density lipoprotein contents of an HepG2 hyperlipidemic cell model, and increase the high-density lipoprotein content of an HepG2 hyperlipidemic cell model. Therefore, this study further expanded the space for the comprehensive development of rice bran and realised the value-added utilisation of rice bran.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. K. Ravichanthiran, Z.F. Ma, H. Zhang, Y. Cao, C.W. Wang, Antioxidants 7(6), 71 (2018). https://doi.org/10.3390/antiox7060071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Rahbaran, A. Aarabi, M. Pourabedin, JFET 8(2), 55–64 (2019). https://doi.org/10.32732/jfet.2019.8.2.55

    Article  Google Scholar 

  3. A. Srichamroen, Lwt 59(1), 486–494 (2014). https://doi.org/10.1016/j.lwt.2014.04.046

    Article  CAS  Google Scholar 

  4. M.O. Carruba, L. Busetto, S. Bryant, A. Caretto, N.J. Farpour-Lambert, G. Fatati, D. Foschi, F. Giorgino, J.C.G. Halford, A. Lenzi, G. Malfi, G. O’Malley, D. Napier, F. Santini, P. Sbraccia, C. Spinato, E. Woodward, E. Nisoli, Obes. Facts 14(1), 163–168 (2021). https://doi.org/10.1159/000514218

    Article  PubMed  PubMed Central  Google Scholar 

  5. L. Wellard-Cole, R. Li, C. Tse, W.L. Watson, C. Hughes, Public Health Nutr. 23(12), 2221–2227 (2020). https://doi.org/10.1017/S1368980019004890

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Hamidi, A. Azadi, P. Rafiei, P. Rafiei, Adv. Drug Deliv. Rev. 60(15), 1638–1649 (2008). https://doi.org/10.1016/j.addr.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  7. B.L.N. Ramsingh, The History of International Food Safety Standards and the Codex alimentarius (1955–1995) (University of Toronto, Toronto, 2012)

    Google Scholar 

  8. P. Sooriyaarachchi, R. Jayawardena, T. Pavey, N.A. King, Trials 23(1), 1–10 (2022). https://doi.org/10.1186/s13063-022-06784-x

    Article  Google Scholar 

  9. D. Armborst, C. Metzner, N. Bitterlich, M. Lemperle, R. Siener, Int. J. Food Sci. Nutr. 70(4), 453–466 (2019). https://doi.org/10.1080/09637486.2018.1537363

    Article  CAS  PubMed  Google Scholar 

  10. M. Hanis-Syazwani, I. Bolarinwa, O. Lasekan, K. Muhammad, Food Res. 2(4), 340–349 (2018)

    Article  Google Scholar 

  11. W. Tian, D. Cheng, X. Yan, G. Zhang, G. Zeng, X. Bao, Z. Zeng, P. Yu, D. Gong, Eur. Food Res. Technol. 247(12), 2945–2959 (2021). https://doi.org/10.1007/s00217-021-03849-0

    Article  CAS  Google Scholar 

  12. M. Abdin, Y.S. Hamed, H.M.S. Akhtar, D. Chen, S. Mukhtar, P. Wan, A. Riaz, X. Zeng, Int. J. Food Sci. Technol. 54(6), 2084–2093 (2019). https://doi.org/10.1111/ijfs.14112

    Article  CAS  Google Scholar 

  13. X. Yang, J. Dai, Y. Zhong, X. Wei, M. Wu, Y. Zhang, A. Huang, L. Wang, Y. Huang, C. Zhang, X. Chen, H. Xiao, Food Funct. 12(14), 6576–6587 (2021). https://doi.org/10.1039/d1fo00521a

    Article  CAS  PubMed  Google Scholar 

  14. S. Heo, S. Jeon, S. Lee, LWT 55(2), 627–631 (2014). https://doi.org/10.1016/j.lwt.2013.10.002

    Article  CAS  Google Scholar 

  15. H. Sun, X. Chen, Y. Xiang, Q. Hu, L. Zhao, Food Biosci. 50, 102017 (2022). https://doi.org/10.1016/j.fbio.2022.102017

    Article  CAS  Google Scholar 

  16. H. Demirkesen-Bicak, M. Arici, M. Yaman, S. Karasu, O. Sagdic, Foods. 10(3), 514 (2021). https://doi.org/10.3390/foods10030514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M.D.L.L. Cádiz-Gurrea, I. Borrás-Linares, J. Lozano-Sánchez, J. Joven, S. Fernández-Arroyo, A. Segura-Carretero, Int. J. Mol. Sci. 18(2), 376 (2017). https://doi.org/10.3390/ijms18020376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Muzolf-Panek, K. Stuper-Szablewska, J. Food Meas. Charact. 15(5), 4561–4574 (2021). https://doi.org/10.1007/s11694-021-01028-z

    Article  Google Scholar 

  19. Q. Xiao, M.W. Woo, J. Hu, H. Xiong, Q. Zhao, Food Biosci. 43, 101225 (2021). https://doi.org/10.1016/j.fbio.2021.101225

    Article  CAS  Google Scholar 

  20. B. Wang, Z.-R. Li, C.-F. Chi, Q.-H. Zhang, H.-Y. Luo, Peptides 36(2), 240–250 (2012). https://doi.org/10.1016/j.peptides.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  21. G. D’Auria, C. Nitride, M.A. Nicolai, G. Mamone, D. Montesano, E.N.C. Mills, P. Ferranti, Food Chem. 401, 134185 (2023). https://doi.org/10.1016/j.foodchem.2022.134185

    Article  CAS  PubMed  Google Scholar 

  22. J. Miao, H. Lin, S. Zhang, J. Huo, S. Deng, Food Sci. Nutr. 8(3), 1575–1582 (2020). https://doi.org/10.1002/fsn3.1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. Firozian, M.A. Emadi, G. Chehardoli, F. Ghafari, J. Pharm. Innov. (2021). https://doi.org/10.1007/s12247-021-09602-0

    Article  Google Scholar 

  24. R.T. Ahnen, S.S. Jonnalagadda, J.L. Slavin, Nutr. Rev. 77(11), 735–747 (2019). https://doi.org/10.1093/nutrit/nuz028

    Article  PubMed  Google Scholar 

  25. H. Zhang, G.E. Bartley, C.R. Mitchell, H. Zhang, W. Yokoyama, Food Chem. 59(20), 10927–10933 (2011). https://doi.org/10.1021/jf202721z

    Article  CAS  Google Scholar 

  26. X. Chen, Y. Chen, D. Wu, C. Wen, Y.M. Zhou, Asian Austral. J. Anim. 28(4), 544 (2015). https://doi.org/10.5713/ajas.14.0609

    Article  CAS  Google Scholar 

  27. C. Li, X. Wu, D. Mu, Y. Zhao, S. Luo, X. Zhong, S. Jiang, X. Li, Z. Zheng, J. Food Sci. 83(12), 3092–3098 (2018). https://doi.org/10.1111/1750-3841.14403

    Article  CAS  PubMed  Google Scholar 

  28. B. Chen, C. Yu, J. Liu, Y. Yang, X. Shen, S. Liu, X. Tang, Int. J. Food Sci. Technol. 52(12), 2604–2613 (2017). https://doi.org/10.1111/ijfs.13547

    Article  CAS  Google Scholar 

  29. R. Xin, L. Ma, R. Liu, X. Huang, B. Fu, X. Dong, L. Qin, Foods 11(19), 3015 (2022). https://doi.org/10.3390/foods11193015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Chempaka, M. Yusof, A.S. Babji, Int. J. Food Sci. Nutr. 47(4), 323–329 (1996). https://doi.org/10.3109/09637489609041032

    Article  CAS  Google Scholar 

  31. R. Shiyan, S. Liping, S. Xiaodong, H. Jinlun, Z. Yongliang, Food Chem. 362, 130249 (2021)

    Article  PubMed  Google Scholar 

  32. H. Chen, Q. Nie, J. Hu, X. Huang, K. Zhang, S. Pan, S. Nie, J. Agric. Food Chem. 67(18), 5278–5288 (2019). https://doi.org/10.1021/acs.jafc.9b01192

    Article  CAS  PubMed  Google Scholar 

  33. S. Li, L. Shang, D. Wu, H. Dun, X. Wei, J. Zhu, A.W. Zongo, B. Li, F. Geng, Food Hydrocolloid. 120, 106923 (2021). https://doi.org/10.1016/j.foodhyd.2021.106923

    Article  CAS  Google Scholar 

  34. Z. Li, L. Zhang, C. Mao, Z. Song, X. Li, C. Liu, Int. J. Biol. Macromol. 183, 2121–2130 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.196

    Article  CAS  PubMed  Google Scholar 

  35. L. Huang, Y. Ren, H. Li, Q. Zhang, Y. Wang, J. Cao, X. Liu, Front. Nutr. 9, 843832 (2022). https://doi.org/10.3389/fnut.2022.843832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. Ding, Y. Xu, H. Xiong, Z. Xu, Z. Tian, J. Texture Stud. 46(2), 87–93 (2015). https://doi.org/10.1111/jtxs.12115

    Article  Google Scholar 

  37. K. Srinivasan, K. Platel, M.V.L. Rao, Eur. Food Res. Technol. 228, 103–108 (2008). https://doi.org/10.1007/s00217-008-0911-1

    Article  CAS  Google Scholar 

  38. T. Poonpiriya, P. Sawaengkit, P. Churnjitapirom, S. Thaweboon, Trans. Tech. Publ. Ltd. 1020, 187–191 (2021). https://doi.org/10.4028/www.scientific.net/MSF.1020.187

    Article  Google Scholar 

  39. L. Cassani, B. Tomadoni, G. Viacava, A. Ponce, M.R. Moreira, LWT 72, 90–98 (2016). https://doi.org/10.1016/j.lwt.2016.04.037

    Article  CAS  Google Scholar 

  40. J.S. Park, H.S. Na, Korean J. Food Preserv. 25(5), 501–506 (2018). https://doi.org/10.11002/kjfp.2018.25.5.501

    Article  Google Scholar 

  41. M. Cannas, S. Pulina, P. Conte, A. Del Caro, P.P. Urgeghe, A. Piga, C. Fadda, Foods. 9(6), 808 (2020). https://doi.org/10.3390/foods9060808

    Article  PubMed  PubMed Central  Google Scholar 

  42. C.-Y. Zhou, Q. Xia, J. He, Y.-Y. Sun, Y.-L. Dang, G.-H. Zhou, F. Geng, D.-D. Pan, J.-X. Cao, Food Chem. 388, 133059 (2022). https://doi.org/10.1016/j.foodchem.2022.133059

    Article  CAS  PubMed  Google Scholar 

  43. M.G. Soto-Zarazúa, M. Bah, A.S.G. Costa, F. Rodrigues, F.B. Pimentel, I. Rojas-Molina, A. Rojas, M. Oliveira, J. Med. Food 20(10), 1039–1046 (2017). https://doi.org/10.1089/jmf.2017.0046

    Article  CAS  PubMed  Google Scholar 

  44. Z. Dai, H. Zhang, F. Wu, Y. Chen, C. Yang, H. Wang, X. Sui, Y. Guo, B. Xin, Z. Guo, Nutrients 14(18), 3860 (2022). https://doi.org/10.3390/nu14183860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. K. Hussain, Y. Yang, J. Wang, H. Bian, X. Lei, J. Chen, Q. Li, L. Wang, Q. Zhong, X. Fang, Y. Wang, H. Wei, Y. Tong, Z. Liao, FSHW 11(3), 697–710 (2022). https://doi.org/10.1016/j.fshw.2021.12.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FY: conceptualisation, data curation-lead, formal analysis-lead, investigation lead, visualisation, writing-original draft-lead. HH: writing-review and editing. ZW: writing-review and editing. XJ: writing-review and editing, supervision-lead. FD: writing-review and editing. YJ: software and editing. RH: supervision-lead, funding acquisition-lead, project administration lead, visualization.

Corresponding author

Correspondence to Rong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., He, H., Wang, Z. et al. Formula optimization and in vitro lipid reducing activity evaluation of nutritious rice bran meal replacement powder. Food Measure 18, 1075–1089 (2024). https://doi.org/10.1007/s11694-023-02204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02204-z

Keywords

Navigation