Skip to main content
Log in

Comparing the performance of miniaturized near-infrared spectrometers in the evaluation of mango quality

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) spectroscopy is an effective tool for the non-destructive determination of produce quality parameters. Herein we report an evaluation of the performance of four different commercially available portable NIR spectrometers for the non-destructive determination of selected quality parameters of Nam-Dok Mai mangoes. The miniaturized NIR spectrometers: SCiO (750–1070 nm), Linksquare (400–1050 nm), DLP NIRscan Nano (900–1700 nm), and Neospectra (1300–2500 nm) were used to acquire NIR spectra from mango samples. The spectroscopic data was used to develop calibration models for quality parameters of Nam-Dok Mai mangoes. The investigated mango quality parameters were dry matter (DM), total soluble solids (TSS), titratable acidity (TA), pH, and firmness. The model development was carried out using partial least squares regression (PLSR). The results indicate that NIR spectroscopic data obtained using the SCiO and Linksquare instruments resulted in calibration models with satisfactory figures of merit (\({R}_{c}^{2}\) > 0.80) for DM, TSS, and pH. In addition, spectroscopic data acquired with the Linksquare instrument could also be used to make a satisfactory calibration model for TA. On the other hand, figures of merit for the calibration models for firmness based on the spectroscopic data acquired using the SCiO and Linksquare were not satisfactory. The figures of merit for calibration models for all the investigated mango quality parameters, based on spectroscopic data acquired with the DLP NIRscan Nano and Neospectra spectrometers, were not satisfactory. However, the figures of merit for the calibration models based on the spectroscopic data acquired with the Neospectra spectrometer were better than the figures of merit for calibration models based on the spectroscopic data acquired with the DLP NIRscan Nano instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be provided upon request.

References

  1. W. Cheng, K.M. Sørensen, R.J. Mongi, B.K. Ndabikunze, B.E. Chove, D.-W. Sun, S.B. Engelsen, LWT 112, 108214 (2019)

    CAS  Google Scholar 

  2. T. Nordey, J. Joas, F. Davrieux, M. Chillet, M. Léchaudel, Sci. Hortic. 216, 51–57 (2017)

    Google Scholar 

  3. N. Busatto, L. Vittani, B. Farneti, I. Khomenko, M. Caffini, S. Faccini, M. Boschetti, F. Costa, Postharvest Biol. Technol. 183, 111746 (2022)

    CAS  Google Scholar 

  4. A.A. Munawar, D. von Hörsten, J.K. Wegener, E. Pawelzik, D. Mörlein, Eng. Agric. Environ. Food 9, 208–215 (2016)

    Google Scholar 

  5. Y.-Y. Pu, D.-W. Sun, Innov. Food Sci. Emerg. Technol. 33, 348–356 (2016)

    Google Scholar 

  6. S.N. Jha, P. Jaiswal, K. Narsaiah, M. Gupta, R. Bhardwaj, A.K. Singh, Sci. Hortic. 138, 171–175 (2012)

    Google Scholar 

  7. O.C. Wokadala, C. Human, S. Willemse, N.M. Emmambux, J. Food Meas. Charact. 14, 790–798 (2019)

    Google Scholar 

  8. M.E. Maldonado-Celis, E.M. Yahia, R. Bedoya, P. Landázuri, N. Loango, J. Aguillón, B. Restrepo, J.C. Guerrero Ospina, Front. Plant Sci. 10, 1073 (2019)

    PubMed  PubMed Central  Google Scholar 

  9. T. Nordey, F. Davrieux, M. Léchaudel, Postharvest Biol. Technol. 153, 52–60 (2019)

    Google Scholar 

  10. T. Tangpao, N. Phuangsaujai, S. Kittiwachana, D.R. George, P. Krutmuang, B. Chuttong, S.R. Sommano, Agriculture 12, 1407 (2022)

    CAS  Google Scholar 

  11. V. Cortés, C. Ortiz, N. Aleixos, J. Blasco, S. Cubero, P. Talens, Postharvest Biol. Technol. 118, 148–158 (2016)

    Google Scholar 

  12. S.N. Jha, K. Narsaiah, P. Jaiswal, R. Bhardwaj, M. Gupta, R. Kumar, R. Sharma, J. Food Eng. 124, 152–157 (2014)

    Google Scholar 

  13. B.M. Nicolai, T. Defraeye, B. De Ketelaere, E. Herremans, M.L. Hertog, W. Saeys, A. Torricelli, T. Vandendriessche, P. Verboven, Annu. Rev. Food Sci. Technol. 5, 285–312 (2014)

    CAS  PubMed  Google Scholar 

  14. R. Pandiselvam, V. Prithviraj, M.R. Manikantan, A. Kothakota, A.V. Rusu, M. Trif, A. Mousavi Khaneghah, Front. Nutr. 9, 973457 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Manley, Chem. Soc. Rev. 43, 8200–8214 (2014)

    CAS  PubMed  Google Scholar 

  16. B.M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Postharvest Biol. Technol. 46, 99–118 (2007)

    Google Scholar 

  17. H. Cen, Y. He, Trends Food Sci. Technol. 18, 72–83 (2007)

    CAS  Google Scholar 

  18. H. Lin, Y. Ying, Sens. Instrum. Food Qual. Saf. 3, 130–141 (2009)

    Google Scholar 

  19. M. Golic, K.B. Walsh, Anal. Chim. Acta 555, 286–291 (2006)

    CAS  Google Scholar 

  20. E.J.N. Marques, S.T. de Freitas, Food Chem. 323, 126820 (2020)

    CAS  PubMed  Google Scholar 

  21. K.B. Bec, J. Grabska, C.W. Huck, Chemistry 27, 1514–1532 (2021)

    CAS  PubMed  Google Scholar 

  22. K.B. Bec, J. Grabska, C.W. Huck, Foods 11, 1465 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Sohaib Ali Shah, A. Zeb, W.S. Qureshi, A.U. Malik, M. Tiwana, K. Walsh, M. Amin, W. Alasmary, E. Alanazi, Infrared Phys. Technol. 115, 103639 (2021)

    CAS  Google Scholar 

  24. E.J.N. Marques, S.T. de Freitas, M.F. Pimentel, C. Pasquini, Food Chem. 197, 1207–1214 (2016)

    CAS  PubMed  Google Scholar 

  25. P. Rungpichayapichet, B. Mahayothee, M. Nagle, P. Khuwijitjaru, J. Müller, Postharvest Biol. Technol. 111, 31–40 (2016)

    Google Scholar 

  26. J.P. dos Santos Neto, M.W.D. de Assis, I.P. Casagrande, L.C. Cunha Júnior, G.H. de Almeida Teixeira, Postharvest Biol. Technol. 130, 75–80 (2017)

    Google Scholar 

  27. K. Phuangsombut, A. Phuangsombut, A. Terdwongworakul, Int. Food Res. J. 27, 217–223 (2020)

    Google Scholar 

  28. N. Kasim, P. Mishra, R.E. Schouten, E.J. Woltering, Infrared Phys. Technol. 115, 103733 (2021)

    CAS  Google Scholar 

  29. A. Raghavendra, D.S. Guru, M.K. Rao, Artif. Intell. Agric. 5, 43–51 (2021)

    Google Scholar 

  30. R. Mogollón, C. Contreras, M.L. da Silva Neta, E.J.N. Marques, J.P. Zoffoli, S.T. de Freitas, Postharvest Biol. Technol. 167, 111251 (2020)

    Google Scholar 

  31. G. Ferrara, A. Melle, V. Marcotuli, D. Botturi, O. Fawole, A. Mazzeo, J. Food Compos. Anal. 114, 104836 (2022)

    CAS  Google Scholar 

  32. A. Dashti, J. Müller-Maatsch, Y. Weesepoel, H. Parastar, F. Kobarfard, B. Daraei, M.H.S. AliAbadi, H. Yazdanpanah, Foods 11, 71 (2021)

    PubMed  PubMed Central  Google Scholar 

  33. P. Gelabert, E. Pruett, G. Perrella, S. Subramanian, A. Lakshminarayanan, DLP NIRscan Nano: an ultra-mobile DLP-based near-infrared Bluetooth spectrometer (2016)

  34. A. Sharififar, K. Singh, E. Jones, F.I. Ginting, B. Minasny, Soil Use Manag. 35, 607–616 (2019)

    Google Scholar 

  35. M. Golic, K. Walsh, P. Lawson, Appl. Spectrosc. 57, 139–145 (2003)

    CAS  PubMed  Google Scholar 

  36. P.P. Subedi, K.B. Walsh, Postharvest Biol. Technol. 62, 238–245 (2011)

    CAS  Google Scholar 

  37. R.F. Goddu, D.A. Delker, Anal. Chem. 32, 140–141 (1960)

    CAS  Google Scholar 

  38. F. Linow, Food 32, 803–803 (1988)

    Google Scholar 

  39. M.K. Baloch, F. Bibi, S. Afr. J. Bot. 83, 109–116 (2012)

    CAS  Google Scholar 

  40. J. Paixão dos Santos Neto, L.C. Carvalho, G.W.P. Leite, L. CunhaJunior, P. Gratão, S. De Freitas, D.P.F. Almeida, G. Teixeira, Fruits 74, 294–302 (2019)

    Google Scholar 

  41. N.T. Anderson, K.B. Walsh, P.P. Subedi, C.H. Hayes, Postharvest Biol. Technol. 168, 111202 (2020)

    CAS  Google Scholar 

  42. P. Rungpichayapichet, M. Nagle, P. Yuwanbun, P. Khuwijitjaru, B. Mahayothee, J. Müller, Biosyst. Eng. 159, 109–120 (2017)

    Google Scholar 

  43. M.S. Amirul, R. Endut, C.B.M. Rashidi, S.A. Aljunid, N. Ali, M.H. Laili, A.R. Laili, M.N.M. Ismail, Estimation of Harumanis (Mangifera indica L.) sweetness using near-infrared (NIR) spectroscopy, in 1st International Symposium on Engineering and Technology (IOP Publishing, 2020), p. 012070

  44. P.S. Woo, M.F. Ibrahim, pH prediction of Perlis sunshine mango using NIR spectrometer, in IOP Conference Series: Materials Science and Engineering IOP Conference (2019), p. 012021

  45. P. Mishra, E. Woltering, N. El Harchioui, Infrared Phys. Technol. 110, 103459 (2020)

    CAS  Google Scholar 

  46. J. Posom, J. Klaprachan, K. Rattanasopa, P. Sirisomboon, K. Saengprachatanarug, S. Wongpichet, ACS Omega 5, 27909–27921 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. I.A. de Moraes, L.J.P. Cruz-Tirado, D.F. Barbin, Sci. Hortic. 304, 111263 (2022)

    CAS  Google Scholar 

  48. M.V. da Silva Ferreira, I.A. de Moraes, R.V.L. Passos, D.F. Barbin, J.L. Barbosa, Sci. Hortic. 310, 111784 (2023)

    Google Scholar 

  49. X. Yang, L. Zhu, X. Huang, Q. Zhang, S. Li, Q. Chen, Z. Wang, J. Li, Front. Plant Sci. 13, 938162 (2022)

    PubMed  PubMed Central  Google Scholar 

  50. A. Zeb, W.S. Qureshi, A. Ghafoor, A. Malik, M. Imran, A. Mirza, M.I. Tiwana, E. Alanazi, Sci. Rep. 13, 325 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Thailand Research Fund; Grant No. RDG6220018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Kielar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1461 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praiphui, A., Kielar, F. Comparing the performance of miniaturized near-infrared spectrometers in the evaluation of mango quality. Food Measure 17, 5886–5902 (2023). https://doi.org/10.1007/s11694-023-02097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02097-y

Keywords

Navigation