Skip to main content
Log in

Influence of different soaking and drying treatments on anti-nutritional composition and technological characteristics of red and green lentil (Lens culinaris Medik.) flour

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to produce lentil flour with reduced antinutritional factors, acceptable color, and improved techno-functional properties. To obtain lentil flour, red and green lentil seeds were subjected to soaking in distilled water (with/without ultrasound at 80, 100% amplitude for 2 or 4 h) and drying treatments [oven-drying (50, 100 °C) or microwave-drying (600, 900 W)]. The influence of process parameters on phytic acid content (PAC), trypsin inhibitor content (TIC), water absorption capacity (WAC), oil absorption capacity (OAC), and color of lentil flours were investigated. During soaking, the water absorption and hardness of the seeds and pH, soluble solid content, and turbidity of the soaking water varied depending on the soaking parameters and the type of lentil. Lentil flours had WAC and OAC values ranging from 108.5 to 358.9 g water/100 g and from 80.2 to 98.7 g oil/100 g, respectively. Microwave-dried lentil flours had 2.0–2.8 times higher WAC compared to oven-dried ones. Higher microwave power level and oven drying temperature provided higher WAC values. Effect of soaking treatment on color and techno-functional properties of flours varied depending on the type of lentil flour and the applied drying method. Soaking and subsequent drying of lentil seeds yielded 14.5–43.8% reduction in PAC and 58.2–80.1% reduction in TIC. Soaking followed by microwave drying at 900W may be recommended as a rapid and effective method to obtain lentil flour with good color, high WAC, reduced PAC, and TIC. Application of ultrasound during soaking for 4 h prior to drying further enhances the potential of reducing antinutritional factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Joshi, Y. Timilsena, B. Adhikari, J. Integr. Agric. (2017). https://doi.org/10.1016/S2095-

    Article  Google Scholar 

  2. M. Zia-ul-Haq, S. Ahmad, M.A. Shad, S. Iqbal, M. Qayum, M. Ahmad et al., Pak. J. Bot. 43, 1563–1567 (2011)

    CAS  Google Scholar 

  3. R.S. Bhatty, Can. Inst. Food Sci. Technol. J. (1988). https://doi.org/10.1016/S0315-5463(88)70770-1

    Article  Google Scholar 

  4. M. Samtiya, R.E. Aluko, T. Dhewa, Food Prod. Process. Nutr. (2020). https://doi.org/10.1186/s43014-020-0020-5

    Article  Google Scholar 

  5. E. Feizollahi, R.S. Mirmahdi, A. Zoghi, R.T. Zijlstra, M.S. Roopesh, T. Vasanthan, Food Res. Int. (2021). https://doi.org/10.1016/j.foodres.2021.110284

    Article  PubMed  Google Scholar 

  6. H. Nath, M. Samtiya, T. Dhewa, Hum. Nutr. Metab. (2022). https://doi.org/10.1016/j.hnm.2022.200147

    Article  Google Scholar 

  7. M. Muzquiz, A. Varela, C. Burbano, C. Cuadrado, E. Guillamón, M.M. Pedrosa, Phytochem. Rev. (2012). https://doi.org/10.1007/s11101-012-9233-9

    Article  Google Scholar 

  8. A.N.A. Aryee, J.I. Boye, J. Food Process. Preserv. (2017). https://doi.org/10.1111/jfpp.12824

    Article  Google Scholar 

  9. R.S. Pal, A. Bhartiya, P. Yadav, L. Kant, K.K. Mishra, J.P. Aditya, A. Pattanayak, J Food Sci. Technol. (2017). https://doi.org/10.1007/s13197-016-2351-4

    Article  PubMed  Google Scholar 

  10. C. Vidal-Valverde, J. Frias, M.I. Estrella, M.J. Gorospe, R. Ruiz, J. Agric. Food Chem. (1994). https://doi.org/10.1021/jf00046a039

    Article  Google Scholar 

  11. T.H. Hefnawy, Ann. Agric. Sci. (2011). https://doi.org/10.1016/j.aoas.2011.07.001

    Article  Google Scholar 

  12. H.R. Sharif, F. Zhong, F.M. Anjum, M.I. Khan, M.K. Sharif, M.A. Khan et al., Pak. J. Food Sci. 24(4), 186–194 (2014)

    Google Scholar 

  13. I.H. Han, B.K. Baik, Cereal Chem. (2006). https://doi.org/10.1094/CC-83-0428

    Article  Google Scholar 

  14. G. Urbano, M. Lopez-Jurado, M. Hernandez, M.C. Moreu, J. Frias, C. Díaz-Pollan et al., J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00055a022

    Article  Google Scholar 

  15. S. El-Safy, F. Rabab, H.A. Salem, Y.Y. Mukhtar, Alex. Sci. Exch. J. (2013). https://doi.org/10.21608/ASEJAIQJSAE.2013.3112

    Article  Google Scholar 

  16. S. Dev, Y. Gariepy, V. Raghavan, V. Orsat, S. Prakash, ASABE (2010). https://doi.org/10.13031/2013.29837

    Article  Google Scholar 

  17. R. Suhag, A. Dhiman, G. Deswal, D. Thakur, V.S. Sharanagat, K. Kumar, V. Kumar, LWT-Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2021.111960

    Article  Google Scholar 

  18. D. Agrahar-Murugkar, K. Jha, J. Food Sci. Technol. (2010). https://doi.org/10.1007/s13197-010-0082-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. Kaur, S. Sharma, B. Dar, B. Singh, Food Sci. Technol. Int. (2012). https://doi.org/10.1177/1082013211428236

    Article  PubMed  Google Scholar 

  20. R. Pande, H.N. Mishra, M.N. Singh, J. Agric. Food Chem. (2012). https://doi.org/10.1021/jf204540n

    Article  PubMed  Google Scholar 

  21. O. Stewart, G. Raghavan, V. Orsat, K. Golden, Process. Biochem. (2003). https://doi.org/10.1016/S0032-9592(03)00130-4

    Article  Google Scholar 

  22. A. Romano, V. Gallo, P. Ferranti, P. Masi, Curr. Opin. Food Sci. (2021). https://doi.org/10.1016/j.cofs.2021.04.003

    Article  Google Scholar 

  23. R. Alonso, A. Aguirre, F. Marzo, Food Chem. (2000). https://doi.org/10.1016/S0308-8146(99)00169-7

    Article  Google Scholar 

  24. L. Zhang, Y. Hu, X. Wang, O.A. Fakayode, H. Ma, C. Zhou, A. Xia, Q. Li, Ultrason. Sonochem. (2021). https://doi.org/10.1016/j.ultsonch.2021.105794

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Shi, K. Mu, S.D. Arntfield, M.T. Nickerson, J. Food Sci. Technol. (2017). https://doi.org/10.1007/s13197-017-2519-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Serdaroğlu, G. Yıldız-Turp, K. Abrodímov, Meet Sci. (2005). https://doi.org/10.1016/j.meatsci.2004.12.015

    Article  Google Scholar 

  27. M. Hernández-Infante, V. Sousa, I. Montalvo, E. Tena, Plant Foods Hum. Nutr. (1998). https://doi.org/10.1023/A:1008033610737

    Article  PubMed  Google Scholar 

  28. C.A. Patterson, J. Curran, T. Der, Cereal Chem. (2017). https://doi.org/10.1094/CCHEM-05-16-0144-FI

    Article  Google Scholar 

  29. L. Hajas, L. Sipos, É.C. Csobod, M.V. Bálint, R. Juhász, C. Benedek, Foods (2022). https://doi.org/10.3390/foods11142028

  30. J.J. Han, J.A.M. Janz, M. Gerlat, Food Res. Int. (2010). https://doi.org/10.1016/j.foodres.2009.07.015

    Article  Google Scholar 

  31. N. Singh, N. Kaur, J.C. Rana, S.K. Sharma, Food Chem. (2010). https://doi.org/10.1016/j.foodchem.2010.02.064

    Article  Google Scholar 

  32. F.J. Francis, in Food Analysis. ed. by S.S. Nielson (Aspen Publishers, Gainthersburg, 1998), p.599

    Google Scholar 

  33. M. Bayram, A. Kaya, M.D. Öner, J. Food Eng. (2004). https://doi.org/10.1016/S0260-8774(03)00094-3

    Article  Google Scholar 

  34. B. Berton, J. Scher, F. Villieras, J. Hardy, Powder Technol. (2002). https://doi.org/10.1016/S0032-5910(02)00168-7

    Article  Google Scholar 

  35. J.I. Boye, S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, S.H. Rajamohamed, Food Res. Int. (2010). https://doi.org/10.1016/j.foodres.2009.07.021

    Article  Google Scholar 

  36. W. Haug, H.J. Lantzsch, J. Sci. Food Agric. (1983). https://doi.org/10.1002/jsfa.2740341217

    Article  Google Scholar 

  37. Y.-W. Luo, W.-H. Xie, CYTA J. Food (2013). https://doi.org/10.1080/19476337.2012.681705

    Article  Google Scholar 

  38. M.S. Özer, F. Kaya, J. Food Agric. Environ. 8(4), 610–613 (2010)

    Google Scholar 

  39. V. Chelladurai, C. Erkinbaev, in Pulses: Processing and Product Development, ed. By A. Manickavasagan, P. ­Thirunathan­­­ (Springer, Switzerland, 2020), p. 129. https://doi.org/10.1007/978-3-030-41376-7_8

  40. A. Miano, P. Augusto, Compr. Rev. Food Sci. Food Saf. (2018). https://doi.org/10.1111/1541-4337.12328

    Article  PubMed  Google Scholar 

  41. M.M. Kumar, K. Prasad, T.S. Chandra, S. Debnath, J. Saudi Soc. Agric. Sci. (2018). https://doi.org/10.1016/j.jssas.2016.07.004

    Article  Google Scholar 

  42. S. Njoumi, M. Josephe Amiot, I. Rochette, S. Bellagha, C. Mouquet-Rivier, Int. J. Food Sci. Nutr. (2019). https://doi.org/10.1080/09637486.2018.1544229

    Article  PubMed  Google Scholar 

  43. C.M. Chigwedere, D.M. Njoroge, A.M. Van Loey, M.E. Hendrickx, Compr. Rev. Food Sci. Food Saf. (2019). https://doi.org/10.1111/1541-4337.12461

    Article  PubMed  Google Scholar 

  44. J.A. Ulloa, K.V. Enríquez López, Y.B.C. Morales, P. Rosas Ulloa, J.C. Ramírez Ramírez, B.E. Ulloa Rangel, CyTA-J. Food (2015). https://doi.org/10.1080/19476337.2015.1024173

    Article  Google Scholar 

  45. T. Patero, P.E.D. Augusto, Ultrason. Sonochem. (2015). https://doi.org/10.1016/j.ultsonch.2014.10.021

    Article  PubMed  Google Scholar 

  46. A.C. Miano, A. Ibarz, P.E.D. Augusto, Ultrason. Sonochem. (2016). https://doi.org/10.1016/j.ultsonch.2015.10.020

    Article  PubMed  Google Scholar 

  47. A.P. Bonto, R.N. Tiozon, N. Sreenivasulu, D.H. Camacho, Ultrason. Sonochem. (2021). https://doi.org/10.1016/j.ultsonch.2020.105383

    Article  PubMed  Google Scholar 

  48. A.C. Miano, A. Ibarz, P.E.D. Augusto, J. Food Eng. (2017). https://doi.org/10.1016/j.jfoodeng.2016.10.024

    Article  Google Scholar 

  49. J. Tang, S. Sokhansanj, F.W. Sosulski, Cereal Chem. 71, 423–428 (1994)

    Google Scholar 

  50. A.C. Miano, A. Ibarz, P.E.D. Augusto, J. Food Eng. (2018). https://doi.org/10.1016/j.jfoodeng.2018.01.015

    Article  Google Scholar 

  51. A.C. Miano, P.E.D. Augusto, Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2018.02.006

    Article  PubMed  Google Scholar 

  52. D.W. Stanley, J.M. Aguilera, J. Food Biochem. (1985). https://doi.org/10.1111/j.1745-4514.1985.tb00355.x

    Article  Google Scholar 

  53. S.M.T. Gharibzahedi, Z. Emam-Djomeh, S.H. Razavi, S.M. Jafari, Int. J. Food Prop. (2014). https://doi.org/10.1080/10942912.2011.642448

    Article  Google Scholar 

  54. S. Bhattacharya, H.V. Narasimha, S. Bhattacharya, Int. J. Food Sci. Technol. (2005). https://doi.org/10.1111/j.1365-2621.2004.00933.x

    Article  Google Scholar 

  55. M. Joshi, B. Adhikari, J. Panozzo, P. Aldred, J. Food Eng. (2010). https://doi.org/10.1016/j.jfoodeng.2010.03.028

    Article  Google Scholar 

  56. A. Yildirim, M.D. Öner, M. Bayram, J. Food Sci. Tech. Mys. (2013). https://doi.org/10.1007/s13197-011-0362-8

    Article  Google Scholar 

  57. A.M. El-Shehata, Food Rev. Int. (2009). https://doi.org/10.1080/87559129209540938

    Article  Google Scholar 

  58. F. Coffigniez, A. Briffaz, C. Mestres, L. Akissoé, P. Bohuon, M. El Maâtaoui, Food Res. Int. (2019). https://doi.org/10.1016/j.foodres.2019.02.010

    Article  PubMed  Google Scholar 

  59. M. Galiotou-Panayotou, N.B. Kyriakidis, I. Margaris, J. Sci. Food Agric. (2008). https://doi.org/10.1002/jsfa.2973

    Article  Google Scholar 

  60. R. Wang, S. Guo, Compr. Rev. Food Sci. Food Saf. (2021). https://doi.org/10.1111/1541-4337.12714

    Article  PubMed  Google Scholar 

  61. W.C. Harlen, I.R.A.P. Jati, in Polyphenols: Mechanisms of Action in Human Health and Disease (Second Edition), ed. By R.R. Watson, V.R. Preedy, S. Zibadi, (Academic Press, 2018), p. 81. https://doi.org/10.1016/B978-0-12-813006-3.00008-8

  62. M. Mirali, Biochemical Profiling of Phenolic Compounds in Lentil Seeds, Master thesis, University of Saskatchewan, Saskatoon, (2016)

  63. B.F. Davey, Green seed coat colour retention in lentil (Lens culinaris). Master thesis, University of Saskatchewan, Saskatoon, (2007).

  64. B. Zhang, Z. Deng, Y. Tang, P. Chen, R. Liu, D. Ramdath et al., Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2014.04.014

    Article  PubMed  Google Scholar 

  65. M. Irakli, A. Kargiotidou, E. Tigka, D. Beslemes, M. Fournomiti, C. Pankou et al., Agronomy (2021). https://doi.org/10.3390/agronomy11061154

    Article  Google Scholar 

  66. N. Ertas, Legume Res. 36(5), 414–421 (2013)

    Google Scholar 

  67. L. Lamberts, K. Brijs, R. Mohamed, N. Verhelst, J.A. Delcour, J. Agric. Food Chem. (2006). https://doi.org/10.1021/jf062140j

    Article  PubMed  Google Scholar 

  68. C.S. Boon, D.J. McClements, J. Weiss, E.A. Decker, Crit. Rev. Food Sci.. Nutr. (2010). https://doi.org/10.1080/10408390802565889

    Article  PubMed  Google Scholar 

  69. M.O. Becerra, L.M. Contreras, M.H. Lo, J.M. Díaz, G.C. Herrera, J. Funct Foods. (2020). https://doi.org/10.1016/j.jff.2019.103771

    Article  Google Scholar 

  70. F.A.K. Tayie, Effects of traditional African food processing on carotenoid content of ~3-carotene-rich maize and a rapid HPLC method for the quantification of carotenoids in maize, Master thesis, Iowa State University, Ames, (2004)

  71. H.E. Khoo, K.N. Prasad, K.W. Kong, Y. Jiang, A. Ismail, Molecules (2011). https://doi.org/10.3390/molecules16021710

    Article  PubMed  PubMed Central  Google Scholar 

  72. J.F. Song, D.J. Li, H.L. Pang, C.Q. Liu, Ultrason. Sonochem. (2015). https://doi.org/10.1016/j.ultsonch.2015.04.020

    Article  PubMed  Google Scholar 

  73. M. Roca, K. Chen, A. Perez-Galvez, in Handbook on Natural Pigments in Food and Beverages, ed. By R. Carle, R.M. Schweiggert (Woodhead Publishing, 2016), p. 307

  74. F.M. Lajolo, U.M. Lanfer-Marquez, J. Food Sci. (1982). https://doi.org/10.1111/j.1365-2621.1982.tb12929.x

    Article  Google Scholar 

  75. P.K. Singh, A.K. Gautam, U.R. Akare, S.S. Bhagyawant, Biosci. Biotech. Res. Comm. 7(1), 27–31 (2014)

    Google Scholar 

  76. M. Duenas, T. Hernandez, I. Estrella, Eur. Food Res. Technol. (2002). https://doi.org/10.1007/s00217-002-0603-1

    Article  Google Scholar 

  77. O.I. Mba, E.M. Kwofie, M. Ngadi, Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01613

    Article  PubMed  PubMed Central  Google Scholar 

  78. E. Kubicka, A. Troszynska, Pol. J. Food Nutr. Sci. 53(1s), 147–150 (2003)

    Google Scholar 

  79. L. Shi, S.D. Arntfield, M. Nickerson, Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2018.02.056

    Article  PubMed  Google Scholar 

  80. B. Xu, S.K. Chang, Food Chem. (2008). https://doi.org/10.1016/j.foodchem.2008.01.045

    Article  PubMed  Google Scholar 

  81. O.R. Abou-Samaha, A.R. El-Mahdy, Y.G. Moharram, Z Lebensm Unters Forsch. (1985). https://doi.org/10.1007/BF02044299

    Article  PubMed  Google Scholar 

  82. S. Huang, Y. Liu, W. Zhang, K.J. Dale, S. Liu, J. Zhu, L. Serventi, Food Sci. Technol. Int. (2018). https://doi.org/10.1177/1082013217744903

    Article  PubMed  Google Scholar 

  83. J. Frias, C. Vidal-Valverde, C. Sotomayor, C. Diaz-Pollan, G. Urbano, Eur. Food Res. Technol. (2000). https://doi.org/10.1007/s002170050560

    Article  Google Scholar 

  84. C. Chenoll, N. Betoret, P. Fito, J. Food Eng. (2009). https://doi.org/10.1016/j.jfoodeng.2009.05.014

    Article  Google Scholar 

  85. I. Lestienne, C. Mouquet-Rivier, C. Icard-Vernière, I. Rochette, S. Trèche, Int. J. Food Sci. Technol. (2005). https://doi.org/10.1111/j.1365-2621.2004.00941.x

    Article  Google Scholar 

  86. C.S. Zhou, C.E. Okonkwo, A.A. Inyinbor, A.A. Yagoub, A.F. Olaniran, Crit. Rev. Food Sci. Nutr. (2021). https://doi.org/10.1080/10408398.2021.1966379

    Article  PubMed  Google Scholar 

  87. R. Mukherjee, R. Chakraborty, A. Dutta, Food Meas. (2019). https://doi.org/10.1007/s11694-018-9954-6

    Article  Google Scholar 

  88. P. Morales, L. Cebadera-Miranda, R.M. Cámara, F.S. Reis, L. Barros, J.D.J. Berrios, I.C.F.R. Ferreira, M. Cámara, J. Funct. Foods (2015). https://doi.org/10.1016/j.jff.2015.09.044

    Article  Google Scholar 

  89. Â. Liberal, Â. Fernandes, M.I. Dias, J. Pinela, A.M. Vivar-Quintana, I.C.F.R. Ferreira, L. Barros, Foods (2021). https://doi.org/10.3390/foods10071629

  90. D. De Angelis, A. Pasqualone, I. Allegretta, C. Porfido, R. Terzano, G. Squeo, C. Summo, Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e06177

    Article  PubMed  PubMed Central  Google Scholar 

  91. S. Liu, H. Yin, M. Pickard, Y. Ai, Food Res. Int. (2020). https://doi.org/10.1016/j.foodres.2020.109568

    Article  PubMed  Google Scholar 

  92. M. Kaur, K.S. Sandhu, J. Food Sci. Technol. (2010). https://doi.org/10.1007/s13197-010-0042-0

    Article  PubMed  PubMed Central  Google Scholar 

  93. B. Nagmani, J. Prakash, Int. J. Food Sci. Nutr. (1997). https://doi.org/10.3109/09637489709012594

    Article  PubMed  Google Scholar 

  94. Z. Ma, J.I. Boye, B.K. Simpson, S.O. Prasher, D. Monpetit, L. Malcolmson, Food Res. Int. (2011). https://doi.org/10.1016/j.foodres.2010.12.017

    Article  Google Scholar 

  95. M. Braşoveanu, M.R. Nemtanu, Starch/Staerke (2014). https://doi.org/10.1002/star.201200191

    Article  Google Scholar 

  96. A.K. Datta, Chem. Eng. Prog. 86, 47–53 (1990)

    CAS  Google Scholar 

  97. N. Mollekopf, K. Treppe, P. Fiala, O. Dixit, Chem. Ing. Tech. (2011). https://doi.org/10.1002/cite.201000105

    Article  Google Scholar 

  98. T. Palav, K. Seetharaman, Carbohydr. Polym. (2007). https://doi.org/10.1016/j.carbpol.2006.07.006

    Article  Google Scholar 

  99. S.D. Arntfield, M.G. Scanlon, L.J. Malcolmson, B. Watts, D. Ryland, V. Savoie, Food Res. Int. (1997). https://doi.org/10.1016/S0963-9969(97)00061-6

    Article  Google Scholar 

  100. S.M. Pathiratne, P.J. Shand, M. Pickard, J.P.D. Wanasundara, Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2015.03.026

    Article  Google Scholar 

  101. B. Lapčíková, L. Lapčík, T. Valenta, P. Majar, K. Ondroušková, LWT-Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2021.111082

    Article  Google Scholar 

  102. J.M. Bühler, B.L. Dekkers, M.E. Bruins, A.J. van der Goot, Foods (2020). https://doi.org/10.3390/foods9081077

  103. A. Hassan, D. von Hoersten, I. Ahmed, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.07.190

    Article  PubMed  Google Scholar 

  104. E. Kaya, N.B. Tuncel, N. Yılmaz Tuncel, J. Food Sci. Technol. (2017). https://doi.org/10.1007/s13197-017-2714-5

    Article  PubMed  PubMed Central  Google Scholar 

  105. A. Saxena, T. Maity, P.S. Raju, A.S. Bawa, Food Bioprocess. Technol. (2012). https://doi.org/10.1007/s11947-010-0409-2

    Article  Google Scholar 

  106. D.I. Onwude, N. Hashim, R. Janius, N.M. Nawi, K. Abdan, Ital. J. Food Sci. (2017). https://doi.org/10.14674/1120-1770%2Fijfs.v398

    Article  Google Scholar 

  107. C. Nozzolillo, G.M. De Bezada, Can. J. Plant Sci. (1984). https://doi.org/10.4141/cjps84-113

    Article  Google Scholar 

  108. B.K. Kala, V.R. Mohan, Int. Food Res. J. 19(3), 961–969 (2012)

    CAS  Google Scholar 

  109. M.M. Martin-Cabrejas, Y. Aguilera, M.M. Pedrosa, C. Cuadrado, T. Hernandez, S. Diaz et al., Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2008.10.070

    Article  Google Scholar 

  110. A.S. Abdel-Gawad, B.R. Ramadan, R.E.A. Oraby, Int. J. Agric. Policy Res. 1(4), 27–31 (2013)

    Google Scholar 

  111. G. Manez, A. Alegria, R. Farre, A. Frigola, Int. J. Food Sci. Nutr. (2002). https://doi.org/10.1080/09637480220164343

    Article  PubMed  Google Scholar 

  112. Y.S. Hafez, A.I. Mohammed, P.A. Perera, G. Singh, A.S. Hussein, J. Food Sci. (1989). https://doi.org/10.1111/j.1365-2621.1989.tb07921.x

    Article  Google Scholar 

  113. A. Kumar, A. Lal, A.D. Semwal, IJSET 4(5), 711–715 (2016)

    Google Scholar 

  114. M.A. Ojo, Food Res. (2021). https://doi.org/10.26656/fr.2017.5(3).325

    Article  Google Scholar 

  115. A.P.M. Bloot, D.L. Kalschne, J.A.S. Amaral, I.J. Baraldi, C. Canan, Food Rev Int. (2021). https://doi.org/10.1080/87559129.2021.1906697

    Article  Google Scholar 

  116. S. Aviles-Gaxiola, C. Chuck-Hernandez, S.O. Serna Saldivar, J. Food Sci. (2018). https://doi.org/10.1111/1750-3841.13985

    Article  PubMed  Google Scholar 

  117. H. Huang, K.C. Kwok, H.H. Liang, Ultrason. Sonochem. (2008). https://doi.org/10.1016/j.ultsonch.2007.10.007

    Article  PubMed  Google Scholar 

  118. V.C.O. de Lima, G. Piuvezam, B.L.L. Maciel, A.H. de Araújo Morais, J. Enzyme Inhib. Med. Chem. (2019). https://doi.org/10.1080/14756366.2018.1542387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Gökçen Mazı.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazı, B.G., Yıldız, D. & Barutçu Mazı, I. Influence of different soaking and drying treatments on anti-nutritional composition and technological characteristics of red and green lentil (Lens culinaris Medik.) flour. Food Measure 17, 3625–3643 (2023). https://doi.org/10.1007/s11694-023-01906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01906-8

Keywords

Navigation