Skip to main content
Log in

Effects of different cryoprotectants on the viability of microencapsulated Lactobacillus plantarum CJLP133 during long-term storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

A Correction to this article was published on 30 March 2023

This article has been updated

Abstract

The present study aimed to identify the efficient cryoprotectants formulations on the survival of Lactobacillus plantarum CJLP133 microencapsulated in calcium alginate during freeze-drying. Trehalose, maltodextrin, sorbitol, sucrose, and soy peptone were selected to develop optimal formulations of cryoprotectants that were added to the calcium alginate microencapsulation using extrusion technology. The soy peptone after being combined with trehalose and maltodextrin was determined to have the highest cell viability than other combinations of sucrose and sorbitol during freeze-drying after microencapsulation (p ≤ 0.05). After storage for 12 weeks at 40 °C, the viability of microencapsulated L. plantarum was reduced by 1.03 log CFU mL− 1, while free cell viability was reduced by 1.68 log CFU mL− 1. Additionally, microencapsulated cells with cryoprotectants were resistant to simulated stomach–duodenum passage (SSDP) in vitro model, compared to free cells (p ≤ 0.05). This study highlighted that soy peptone was the most suitable cryoprotectant with trehalose and that the addition of maltodextrin during freeze-drying after microencapsulation of L. plantarum conferred enhanced survival during long-term storage at high temperatures and under adverse SSDP conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. FAO WHO, Guidelines for the Evaluation of Probiotic in Food (FAO, Paris, 2001), pp. 1–11

    Google Scholar 

  2. P.G. Casey, G.D. Casey, G.E. Gardiner, M. Tangney, C. Stanton, R.P. Ross, G.F. Fitzgerald, Lett. Appl. Microbiol. 39, 431–438 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. L.C. Su, C.W. Lin, M.J. Chen, Int. J. Agric. Technol. 60, 49–54 (2007)

    Google Scholar 

  4. H.K. Solanki, D.D. Pawar, D.A. Shah, V.D. Prajapati, G.K. Jani, A.M. Mulla, P.M. Thakar, Biomed Res. Int, 2013, 620719 (2013)

  5. B. Sánchez, S. Delgado, A. Blanco-Míguez, A. Lourenço, M. Gueimonde, A. Margolles, Mol Nutr Food Res. 61 (2017)

  6. X. Meng, C. Stanton, G. Fitzgerald, C. Daly, R. Ross, Food Chem. 106, 1406–1416 (2008)

    Article  CAS  Google Scholar 

  7. T. Duong, R. Barrangou, W.M. Russell, T.R. Klaenhammer, Appl. Environ. Microbiol. 72, 1218–1225 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. K. Li, B. Wang, W. Wang, G. Liu, W. Ge, M. Zhang, LWT 116, 108521 (2019)

  9. A. Talwalkar, K. Kailasapathy, Int. J. Dairy. Sci. 86, 2537–2546 (2003)

    Article  CAS  Google Scholar 

  10. Z. Hubálek, Cryobiology 46, 205–229 (2003)

    Article  PubMed  Google Scholar 

  11. A. Carvalho, J. Silva, P. Ho, P. Teixeira, F.X. Malcata, P. Gibbs, Biotechnol. Prog 20, 248–254 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. R.I. Dave, N.P. Shah, Int. J. Dairy. Sci. 81, 2804–2816 (1998)

    Article  CAS  Google Scholar 

  13. W. Krasaekoopt, B. Bhandari, H. Deeth, Int. Dairy. J. 13, 3–13 (2003)

    Article  CAS  Google Scholar 

  14. R. Vaniski, S.C. da Silva, R.A. da Silva-Buzanello, C. Canan, D.A. Drunkler, J. Food Process. Preserv 45, 15364 (2021)

    Article  Google Scholar 

  15. J.M. Mathara, U. Schillinger, C. Guigas, C. Franz, P.M. Kutima, S.K. Mbugua, Int. J. Food Microbiol. 126, 57–64 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. P. Barajas-Álvarez, M. González-Ávila, H. Espinosa-Andrews, LWT 153, 112485 (2022)

    Article  Google Scholar 

  17. C. Hill, F. Guarner, G. Reid, G.R. Gibson, D.J. Merenstein, B. Pot, L. Morelli, R.B. Canani, J.H. Flint, S. Salminen, C.P. Calder, E.M. Sanders, Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014)

    Article  PubMed  Google Scholar 

  18. J. Girón-Hernández, P. Gentile, M. Benlloch-Tinoco, Carbohydr. Polym. 271, 118429 (2021)

    Article  PubMed  Google Scholar 

  19. K.L. Liao, M.C. Yin, J. Agric. Food Chem. 48, 2266–2270 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. N.P.R. Barro, L.M. da Silva, G. de Souza Hassemer, E. Franceschi, R.L. Cansian, A. Junges, G.T. Backes, J. Jamile, C. Rosicler, M. Mignoni, E. Valduga, Biointerface Res. Appl. Chem. 11, 11221–11232 (2020)

    Article  Google Scholar 

  21. S. Nanasombat, N. Sriwong, KMITL Sci. Tech. J. 7 (2007)

  22. A. Karina, P. Hanyung, K. Bobae, Y. Subin, J. Hyunjoo, K. Jin-Hak, J. Yosep, H.H. wilhelm, Korean J. Appl. Microbiol. Biotechnol. 49, 157–166 (2021)

    Article  Google Scholar 

  23. S. Yeo, H.S. Shin, H.W. Lee, D. Hong, H. Park, W. Holzapfel, E.B. Kim, C.S. Huh, J. Microbiol. Biotechnol. 28, 718–731 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. A. Chotiko, S. Sathivel, LWT - Food Sci. Technol. 59, 59–64 (2014)

    Article  CAS  Google Scholar 

  25. K.B.P.K. Reddy, S.P. Awasthi, A.N. Madhu, S.G. Prapulla, Food Biotechnol. 23, 243–265 (2009)

    Article  CAS  Google Scholar 

  26. G.F. de Valdéz, G.S. de Giori, A.A. de Ruiz Holgado, G. Oliver, Appl. Environ. Microbiol. 45, 302–304 (1983)

    Article  PubMed  PubMed Central  Google Scholar 

  27. D. Rodrigues, S. Sousa, T. Rocha-Santos, J.P. Silva, J.M. Sousa Lobo, P. Costa, M.H. Amaral, M.M. Pintado, A.M. Gomes, F.X. Malcata, A.C.Feites. Int. Dairy J. 21, 869–876 (2011)

  28. C. Desmond, C. Stanton, G.F. Fitzgerald, K. Collins, R. Paul Ross, Int. Dairy. J. 11, 801–808 (2001)

    Article  Google Scholar 

  29. T. Tsvetkov, R. Brankova, Cryobiology 20, 318–323 (1983)

    Article  CAS  PubMed  Google Scholar 

  30. M.B. Akin, S. Akin, Food Chem. 100, 788–793 (2007)

    Article  Google Scholar 

  31. A. Nag, S. Das, Int. J. Dairy. Technol. 66, 162–169 (2013)

    Article  CAS  Google Scholar 

  32. R.M. Wang, N. Li, K. Zheng, J.F. Hao, FEMS Microbiol. Lett. (2018)

  33. R.R. Mokarram, S.A. Mortazavi, M.B. Habibi Najafi, F. Shahidi, Int. Food Res. J. 42, 1040–1045 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (121012-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Lee.

Ethics declarations

Declarations

All authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dong Joo Shin, Enkhtsatsral Elbegbayar contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.J., Elbegbayar, E., Baek, Y. et al. Effects of different cryoprotectants on the viability of microencapsulated Lactobacillus plantarum CJLP133 during long-term storage. Food Measure 17, 3264–3271 (2023). https://doi.org/10.1007/s11694-023-01863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01863-2

Keywords

Navigation