Skip to main content
Log in

Rapid detection of kanamycin using cooperative recognition split aptamer and graphene oxide nanosheets

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Split aptamers are fragments of the parent aptamer which still possess binding ability to its target. They have shown great potential in the development of aptasensors. In this study, a fluorescence aptasensor was constructed employing the split aptamer as a cooperative recognition molecular probe and Graphene Oxide nanosheets (GO) as a quencher for rapid detection of kanamycin in chilled pork. Under optimal conditions,the proposed biosensor showed a good linear relationship in the range of 0.5–50 nM with the detection limit of 0.36 nM. The recoveries of the actual samples ranged from 97.6 to 103.5%. Furthermore, the test can be completed in 25 min. This study provides good reference for developing simple, economical, and rapid assay for other small molecular targets detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Bai, H. Hou, B. Zhang, J. Tang, Label-free detection of kanamycin using aptamer-based cantilever array sensor. Biosens. Bioelectron. 56, 112–116 (2014). https://doi.org/10.1016/j.bios.2013.12.068

    Article  CAS  PubMed  Google Scholar 

  2. M. Ramezani, N.M. Danesh, P. Lavaee, K. Abnous, S.M. Taghdisi, A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sens. Actuators B 222, 1–7 (2016). https://doi.org/10.1016/j.snb.2015.08.024

    Article  CAS  Google Scholar 

  3. C. Wang, D. Chen, Q. Wang, R. Tan, Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles. Biosens. Bioelectron. 91, 262–267 (2017). https://doi.org/10.1016/j.bios.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  4. S. Yu, Q. Wei, B. Du, D. Wu, H. Li, L. Yan, H. Ma, Y. Zhang, Label-free immunosensor for the detection of kanamycin using Ag@Fe(3)O(4) nanoparticles and thionine mixed graphene sheet. Biosens. Bioelectron. 48, 224–229 (2013). https://doi.org/10.1016/j.bios.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  5. X. Zhang, J. Wang, Q. Wu, L. Li, Y. Wang, H. Yang, Determination of kanamycin by high performance liquid chromatography. Molecules 24(10), 1902 (2019). https://doi.org/10.3390/molecules24101902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. Chen, Q. Chen, S. Tang, X. Xiao, LC method for the analysis of kanamycin residue in swine tissues using derivatization with 9-fluorenylmethyl chloroformate. J. Sep. Sci. 32(21), 3620–3626 (2009). https://doi.org/10.1002/jssc.200900408

    Article  CAS  PubMed  Google Scholar 

  7. A. Eryavuz, I. Kucukkurt, D. Arslan-Acaroz, S. Ince, U. Acaroz, Anadolu Manda Sütlerinde Kanamisin Kalıntısının LC-MS/MS İle Belirlenmesi. Kafkas Universitesi Veteriner Fakultesi Dergisi 26(1), 97–102 (2019). https://doi.org/10.9775/kvfd.2019.22401

    Article  Google Scholar 

  8. G. Zhu, C. Bao, W. Liu, X. Yan, L. Liu, J. Xiao, C. Chen, Rapid detection of AGs using microchip capillary electrophoresis contactless conductivity detection. Curr. Pharm. Anal. 15(1), 9–16 (2018). https://doi.org/10.2174/1573412913666170918160004

    Article  CAS  Google Scholar 

  9. Z.W. Yiqiang Chen, Z. Wang, S. Tang, Y. Zhu, X. Xiao, Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. J. Agric. Food Chem. 56(9), 2944–2952 (2008)

    Article  PubMed  Google Scholar 

  10. D. Wei, H. Meng, K. Zeng, Z. Huang, Visual dual dot immunoassay for the simultaneous detection of kanamycin and streptomycin in milk. Anal. Methods 11(1), 70–77 (2019). https://doi.org/10.1039/c8ay02006j

    Article  CAS  Google Scholar 

  11. K. Zhang, J. Cao, Y. Wu, F. Hu, T. Li, Y. Wang, N. Gan, A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Microchim. Acta 186(2), 120 (2019). https://doi.org/10.1007/s00604-018-3207-6

    Article  CAS  Google Scholar 

  12. T. Gao, C. Sun, N. Zhang, Y. Huang, H. Zhu, C. Wang, J. Cao, D. Wang, An electrochemical platform based on a hemin–rGO–cMWCNTs modified aptasensor for sensitive detection of kanamycin. RSC Adv. 11(26), 15817–15824 (2021). https://doi.org/10.1039/d1ra01135a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Z. Huang, Z. Li, Y. Chen, L. Xu, Q. Xie, H. Deng, W. Chen, H. Peng, Regulating valence states of gold nanocluster as a new strategy for the ultrasensitive electrochemiluminescence detection of kanamycin. Anal. Chem. 93(10), 4635–4640 (2021). https://doi.org/10.1021/acs.analchem.1c00063

    Article  CAS  PubMed  Google Scholar 

  14. A. Zengin, U. Tamer, T. Caykara, Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Anal. Chim. Acta 817, 33–41 (2014). https://doi.org/10.1016/j.aca.2014.01.042

    Article  CAS  PubMed  Google Scholar 

  15. P. Ma, H. Ye, J. Deng, I.M. Khan, L. Yue, Z. Wang, A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection. Talanta 205, 120119 (2019). https://doi.org/10.1016/j.talanta.2019.120119

    Article  CAS  PubMed  Google Scholar 

  16. A. Mehlhorn, P. Rahimi, Y. Joseph, Aptamer-based biosensors for antibiotic detection: a review. Biosensors (Basel) 8(2), 54 (2018). https://doi.org/10.3390/bios8020054

    Article  CAS  PubMed  Google Scholar 

  17. A. Chen, M. Yan, S. Yang, Split aptamers and their applications in sandwich aptasensors. TrAC Trends Anal. Chem. 80, 581–593 (2016). https://doi.org/10.1016/j.trac.2016.04.006

    Article  CAS  Google Scholar 

  18. S. Li, Y. Zheng, Q. Zou, G. Liao, X. Liu, L. Zou, X. Yang, Q. Wang, K. Wang, Engineering and application of a myoglobin binding split aptamer. Anal. Chem. 92(21), 14576–14581 (2020). https://doi.org/10.1021/acs.analchem.0c02869

    Article  CAS  PubMed  Google Scholar 

  19. D.M. Kolpashchikov, A. Spelkov, Binary (split) light-up aptameric sensors. Angew. Chem. Int. Ed. Engl. 60(10), 4988–4999 (2021). https://doi.org/10.1002/anie.201914919

    Article  CAS  PubMed  Google Scholar 

  20. Z. Zhang, X. Zhao, J. Liu, J. Yin, X. Cao, Highly sensitive sandwich electrochemical sensor based on DNA-scaffolded bivalent split aptamer signal probe. Sens. Actuators B. 311, 127920 (2020). https://doi.org/10.1016/j.snb.2020.127920

    Article  CAS  Google Scholar 

  21. L. Shen, T. Bing, X. Liu, J. Wang, L. Wang, N. Zhang, D. Shangguan, Flow cytometric bead sandwich assay based on split aptamer. ACS Appl. Mater. Interfaces 10(3), 2312–2318 (2018). https://doi.org/10.1021/acsami.7b16192

    Article  CAS  PubMed  Google Scholar 

  22. X. Qi, X. Yan, Y. Zhao, L. Li, S. Wang, Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers: a review. TrAC Trends Anal. Chem. 133, 116069 (2020). https://doi.org/10.1016/j.trac.2020.116069

    Article  CAS  Google Scholar 

  23. X. Liu, J. Song, R. Yang, S. Su, L. Zhang, Y. Huang, Q. Fan, Recent advances of biosensors based on split aptamers in biological analysis: a review. IEEE Sens. J. 22(13), 12460–12472 (2022). https://doi.org/10.1109/jsen.2022.3176601

    Article  CAS  Google Scholar 

  24. S. Qi, X. Dong, Y. Sun, Y. Zhang, N. Duan, Z. Wang, Split aptamer remodeling-initiated target-self-service 3D-DNA walker for ultrasensitive detection of 17beta-estradiol. J Hazard Mater 439, 129590 (2022). https://doi.org/10.1016/j.jhazmat.2022.129590

    Article  CAS  PubMed  Google Scholar 

  25. Q. Zhu, L. Liu, R. Wang, X. Zhou, A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. J Hazard Mater 403, 123941 (2021). https://doi.org/10.1016/j.jhazmat.2020.123941

    Article  CAS  PubMed  Google Scholar 

  26. H. Ye, Z. Yang, I.M. Khan, S. Niazi, Y. Guo, Z. Wang, H. Yang, Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit. Rev. Food Sci. (2022). https://doi.org/10.1080/10408398.2022.2064810

    Article  Google Scholar 

  27. A.S.F. Belal, A. Ismail, M.M. Elnaggar, T.S. Belal, Click chemistry inspired copper sulphide nanoparticle-based fluorescence assay of kanamycin using DNA aptamer. Spectrochim. Acta Part A 205, 48–54 (2018). https://doi.org/10.1016/j.saa.2018.07.011

    Article  CAS  Google Scholar 

  28. J. Xu, T. Qing, Z. Jiang, P. Zhang, B. Feng, Graphene oxide-regulated low-background aptasensor for the “turn on” detection of tetracycline. Spectrochim Acta A 260, 119898 (2021). https://doi.org/10.1016/j.saa.2021.119898

    Article  CAS  Google Scholar 

  29. S. Yang, F. Zhang, Z. Wang, Q. Liang, A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens. Bioelectron. 112, 186–192 (2018). https://doi.org/10.1016/j.bios.2018.04.026

    Article  CAS  PubMed  Google Scholar 

  30. Y. Bai, F. Feng, L. Zhao, Z. Chen, H. Wang, Y. Duan, A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 139(8), 1843–1846 (2014). https://doi.org/10.1039/c4an00084f

    Article  CAS  PubMed  Google Scholar 

  31. N. Duan, W. Gong, S. Wu, Z. Wang, An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine. Anal. Chim. Acta 961, 100–105 (2017). https://doi.org/10.1016/j.aca.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  32. F. Yue, H. Li, Q. Kong, J. Liu, G. Wang, F. Li, Q. Yang, W. Chen, Y. Guo, X. Sun, Selection of broad-spectrum aptamer and its application in fabrication of aptasensor for detection of aminoglycoside antibiotics residues in milk. Sens. Actuators B (2022). https://doi.org/10.1016/j.snb.2021.130959

    Article  Google Scholar 

  33. X. Liu, Q. Lu, S. Chen, F. Wang, J. Hou, Z. Xu, C. Meng, T. Hu, Y. Hou, Selection and identification of novel aptamers specific for clenbuterol based on ssDNA library immobilized SELEX and gold nanoparticles biosensor. Molecules 23(9), 2337 (2018). https://doi.org/10.3390/molecules23092337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Zhou, L. Zuo, Y. Wei, C. Dong, Development of fluorescent aptasensing system for ultrasensitive analysis of kanamycin. J. Lumin. (2020). https://doi.org/10.1016/j.jlumin.2020.117124

    Article  Google Scholar 

  35. Y. Zhang, R. Liu, M.M. Hassan, H. Li, Q. Ouyang, Q. Chen, Fluorescence resonance energy transfer-based aptasensor for sensitive detection of kanamycin in food. Spectrochim. Acta Part A 262, 120147 (2021). https://doi.org/10.1016/j.saa.2021.120147

    Article  CAS  Google Scholar 

  36. Y. He, X. Wen, B. Zhang, Z. Fan, Novel aptasensor for the ultrasensitive detection of kanamycin based on grapheneoxide quantum-dot-linked single-stranded DNA-binding protein. Sens. Actuators B 265, 20–26 (2018). https://doi.org/10.1016/j.snb.2018.03.029

    Article  CAS  Google Scholar 

  37. N.R. Ha, I.P. Jung, I.J. La, H.S. Jung, M.Y. Yoon, Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci. Rep. 7, 40305 (2017). https://doi.org/10.1038/srep40305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province [Grant No. BK20201452], Nanjing Pukou District Social Development Project [Grant No. S2020-17], Hebei Agricultural Science and Technology Achievement Transformation Fund [Grant No. 20822906D].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Ye or Yuanxin Guo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1096 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Wan, T., Li, X. et al. Rapid detection of kanamycin using cooperative recognition split aptamer and graphene oxide nanosheets. Food Measure 17, 2144–2151 (2023). https://doi.org/10.1007/s11694-022-01781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01781-9

Keywords

Navigation