Skip to main content
Log in

Whiteness measurement of Agaricus bisporus based on image processing and color calibration model

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Agaricus bisporus (white button mushrooms) is nutritious edible fungus, and the whiteness of the mushroom is an important indicator to evaluate its freshness and quality. To realize the accurate measurement of A. bisporus’ whiteness, this paper proposes a white measurement method of A. bisporus based on image analysis. An imaging system was built with a D65 standard light source, and a nonlinear color calibration model was constructed. The image RGB value was converted into a CIE-XYZ tri-stimulus value, and then the CIE Ganz whiteness formula was used to accurately determine the whiteness. Based on colorimeter measurement results, the image system was calibrated using 8 Gy-level cards, and the whiteness of A. bisporus with various whiteness grades was measured. The measurements of machine vision and colorimeter had a high correlation (r = 0.99), and the color difference ΔE*ab < 2. For 4 groups of A. bisporus with different whiteness grades, the measurement results of machine vision among the four groups were significantly different (P < 0.01). At the same time, the whiteness of A. bisporus under different storage conditions was measured by machine vision. There was a significant correlation between the storage time and whiteness, which indicated that the whiteness value determined by machine vision can be used to quantitatively evaluate the freshness of A. bisporus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.C. Eastwood, B. Herman, R. Noble, A. Dobrovin-Pennington, K.S. Burton, Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO2. Fungal Genet. Biol. 55(55), 54–66 (2013). https://doi.org/10.1016/j.fgb.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  2. X.-Y. Wang, H.-Z. Hang, L. Lin, Z.-L. Liu, Influences of High oxygen atmosphere follow-up effect on shelf-life of Agaricus bisporus. Trans. Chin. Soc. Agric. Mach. 48, 309–316 (2017)

    Google Scholar 

  3. L. Aguirre, J.M. Frias, C. Barry-Ryan, H. Grogan, Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. J. Food Eng. 91(2), 280–286 (2009). https://doi.org/10.1016/j.jfoodeng.2008.09.004

    Article  Google Scholar 

  4. J.-T. Ji, J.-W. Sun, K.-X. Zhao, X. Jin, H. Ma, X. Zhu, Measuring the cap diameter of white button mushrooms (Agaricus bisporus) by using depth image processing. Appl. Eng. Agric. 37(4), 623–633 (2021). https://doi.org/10.13031/aea.14356

    Article  Google Scholar 

  5. M. Tutak, O. Demiryürek, Ş Bulut, D. Haroğlu, Analysis of the CIE whiteness and whiteness tint of optically whitened cellulosic fabrics. Text Res. J. 81(1), 58–66 (2011). https://doi.org/10.1177/0040517510380111

    Article  CAS  Google Scholar 

  6. S. Lanning, T. Siebenmorgen, Effects of preharvest nighttime air temperatures on whiteness of head rice. Cereal Chem. 90(3), 218–222 (2013). https://doi.org/10.1094/cchem-07-12-0082-r

    Article  CAS  Google Scholar 

  7. X.-Y. Huang, S.-Y. Wu, R.-M. Fang, R.-M. Fang, Y.-K. Luo, Inspection of chalk degree of rice using genetic neural network. Trans. CSAE 19(3), 137–139 (2003). https://doi.org/10.3321/j.issn:1002-6819.2003.03.032

    Article  Google Scholar 

  8. N. Cheng, D.M. Barbano, M.A. Drake, Hunter versus CIE color measurement systems for analysis of milk-based beverages. J. Dairy Sci. 101(6), 4891 (2018). https://doi.org/10.3168/jds.2017-14197

    Article  CAS  PubMed  Google Scholar 

  9. W. Luo, S. Westland, P. Brunton, R. Ellwood, I.A. Pretty, N. Mohan, Comparison of the ability of different colour indices to assess changes in tooth whiteness. J. Dent. 35(2), 109–116 (2007). https://doi.org/10.1016/j.jdent.2006.06.006

    Article  PubMed  Google Scholar 

  10. A. Mam, B. Sry, A. Lsj, B. Sn, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  11. A. Sry, B. Haa, C. Oa, A. Sn, Synthesis, characterization and application of Co/Co3o4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  12. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci. 27(2), 1244–1253 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  14. S. Rahelehyousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500–11512 (2021)

    Article  Google Scholar 

  15. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason Sonochem. 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  PubMed  Google Scholar 

  16. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  17. M. Salavati-Niasari, A. Sobhani, S. Yousefi, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  18. S.R. Yousefi, D. Ghanbari, M.S. Niasari, Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6, 77–82 (2016). https://doi.org/10.7508/jns.2016.01.013

    Article  CAS  Google Scholar 

  19. G. Ernst, Whiteness formulas: a selection. Appl. Opt. 18, 1073–1078 (1979). https://doi.org/10.1364/AO.18.001073

    Article  Google Scholar 

  20. R.S. Hunter, The measurement of appearance. Phys. Today 29(10), 52 (1987). https://doi.org/10.1063/1.3024412

    Article  Google Scholar 

  21. C. Guo, X. Zuo, Y. Liu, R. He, Y. Xi, M. Huang, The performance of different whiteness formulas for white papers. in Advances in Graphic Communication, Printing and Packaging, ed. by P. Zhao, Y. Ouyang, M. Xu, L. Yang, Y. Ren. Lecture Notes in Electrical Engineering, vol. 543. (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-13-3663-8_15

  22. H. Goto, N. Asanome, K. Suzuki, T. Sano, H. Saito, Y. Abe, M. Chuba, T. Nishio, Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer. Breed. Sci. 63(5), 489–494 (2014). https://doi.org/10.1270/jsbbs.63.489

    Article  PubMed  PubMed Central  Google Scholar 

  23. I. Katayama, M.D. Fairchild, Quantitative evaluation of perceived whiteness based on a color vision model. Color Res. Appl. 35(6), 410–418 (2010). https://doi.org/10.1002/col.20551

    Article  Google Scholar 

  24. D.M.P. Maria, R.G. Hinea, M.J. Rivas, A. Yebra, A.M. Ionescu, R.D. Paravina, L.J. Herrera, Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 32(3), 461–467 (2016). https://doi.org/10.1016/j.dental.2015.12.008

    Article  Google Scholar 

  25. A. David, M.R. Krames, K.W. Houser, Whiteness metric for light sources of arbitrary color temperatures: proposal and application to light-emitting-diodes. Opt. Express 21(14), 16702–16715 (2013). https://doi.org/10.1364/OE.21.016702

    Article  PubMed  Google Scholar 

  26. M. Wei, S. Chen, H.P. Huang, M.R. Luo, Development of a whiteness formula for surface colors under an arbitrary light source. Opt. Express 26(14), 18171–17181 (2018). https://doi.org/10.1364/OE.26.018171

    Article  CAS  PubMed  Google Scholar 

  27. S. Ma, M. Wei, J. Liang, B. Wang, Y. Chen, M. Pointer, M.R. Luo, Evaluation of whiteness metrics. Lighting Res. Technol. 50(3), 429–445 (2016). https://doi.org/10.1177/1477153516667642

    Article  Google Scholar 

  28. V. Briones, J.M. Aguilera, Image analysis of changes in surface color of chocolate. Food Res Int. 38(1), 87–94 (2005). https://doi.org/10.1016/j.foodres.2004.09.002

    Article  Google Scholar 

  29. W. Luo, S. Westland, R. Ellwood, I. Pretty, V. Cheung, Development of a whiteness index for dentistry. J. Dent. 37, 21–26 (2009). https://doi.org/10.1016/j.jdent.2009.05.011

    Article  Google Scholar 

  30. J. Liu, M.R. Paulsen, Corn whiteness measurement and classification using machine vision. Trans. ASAE 43(3), 757–763 (2000). https://doi.org/10.13031/2013.2759

    Article  Google Scholar 

  31. F. Wang, J. Zheng, L. Wang, W. Feng, L. Niu. Classification method research of fresh Agaricus Bisporus based on image processing. in International Conference on Computer and Computing Technologies in Agriculture. (Springer, Cham, 2017), pp. 333–340. https://doi.org/10.1007/978-3-030-06137-1_30

  32. IPTC. International Press Telecommunications Council (IPTC) and Newspaper Association of America (NAA) digital newsphoto parameter record, 4th edn. International Press Telecommunications Council and Newspaper Association of America. (1997). https://www.iptc.org/std/IIM/4.1/specification/Dnprv4.pdf

  33. H. Altural, N.E. Korkmaz, O.G. Saracoglu, M. Tutak, Adaptation of optical RGB sensor to CIE-XYZ color space. 2011 IEEE 19th Signal Processing and Communications Applications Conference (Antalya, Turkey, 2011), pp. 1145–1148. https://doi.org/10.1109/SIU.2011.5929858

  34. W-H. Xiong, B. Funt, Nonlinear RGB-to-XYZ Mapping for Device Calibration. Color & Imaging Conference, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (Vancouver, Canada, 2005), pp. 200–204. https://www.researchgate.net/publication/290749969

  35. A. Joiner, I. Hopkinson, D. Yan, S. Westland, A review of tooth colour and whiteness. J. Dent. 36, 2–7 (2018). https://doi.org/10.1016/j.jdent.2008.02.001

    Article  Google Scholar 

  36. Y.H. Guan, D.L. Lath, T.H. Lilley, D.R. Willmot, I. Marlow, A.H. Brook, The measurement of tooth whiteness by image analysis and spectrophotometry: a comparison. J. Oral Rehabil. 32(1), 7–15 (2005). https://doi.org/10.1111/j.1365-2842.2004.01340.x

    Article  CAS  PubMed  Google Scholar 

  37. Z-B. Xing, B. W, Agaricus bisporus grade specifications: NY/T 1790–2009, 1st edn. (National Agricultural Department, China, 2009), pp. 3–4

  38. L-Z. Wan, B. S, Agaricus bisporus: NTT 224–2006, 2nd edn. (National Agricultural Department, China, 2006), pp. 3–6

  39. Z.-L. Liu, X.-Y. Wang, Quality evaluation and suitable harvest date of mushroom (Agaricus bisporus). Food Sci. Technol. 40(6), 42–46 (2015). https://doi.org/10.13684/j.cnki.spkj.2015.06.012

    Article  CAS  Google Scholar 

  40. T. Masoud, G. Aoife, W. Patrick, D. Colm, Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films. Innov. Food Sci. Emerg. 11(3), 423–431 (2010). https://doi.org/10.1016/j.ifset.2010.01.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Plan Key projects of Scientific and technological Innovation Cooperation between Governments (Grant No. 2019YFE0125100), and the National Natural Science Foundation of China (Grant No. 51975186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Zhang, M., Ji, J. et al. Whiteness measurement of Agaricus bisporus based on image processing and color calibration model. Food Measure 17, 2152–2161 (2023). https://doi.org/10.1007/s11694-022-01748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01748-w

Keywords

Navigation