Skip to main content

Advertisement

Log in

Effect of the multi-stage block freeze concentration process on the physicochemical and biological properties of noni tea (Morinda citrifolia L.): a case study in Brazil to obtain a promising functional food

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Morinda citrifolia, widely known as “noni”, provides fruits of which it is a raw material not only for the preparation of foods, such as beverages, but is also used, for example, in the preparation of cosmetics. However, processing the fruit results in the generation of waste, in which the leaves represent the majority. Taking into account that noni leaves are proven to hold a high amount of bioactive compounds with phytotherapeutic properties, this study proposes the application of multi-stage block freeze concentration performed through the passive thaw method with the aid of the microwave-assisted technique to promote a greater speed and efficiency in the process of concentration of the bioactive components present in Morinda citrifolia L. leaves. The effect of the cryoconcentration steps on the physical, chemical and biological characteristics of the concentrated fractions and residual ice was evaluated in order to quantitatively verify presence and content of phenolics and total solids, viscosity, antioxidant activity, and bioavailability gastrointestinal in vitro. An increase in the phenolic and total solids values was observed at the end of the process, resulting in efficiency in the retention of phenolics above 90%. High-performance liquid chromatography assay detected catechin as bioactive compound of the largest amount in the final product. The use of the microwave-assisted concentration system allowed concentrated fractions with high biological, nutritional and phytotherapic value; indicating that the technique can contribute as a reference in the use of a sustainable technology in the generation of a promising product of high biological value, since the execution and elaboration of the microwave-assisted method allows for a lower energy consumption and waste production, in addition to providing less expensive and easy-to-operate tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABTS:

2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

ANOVA:

Analysis of variance

BFC:

Block freeze concentration

CC1, CC2, CC3, and CC4:

Cryoconcentrated 1, Cryoconcentrated 2, Cryoconcentrated 3 and Cryoconcentrated 4

Cf:

Concentration factor

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

HPLC-DAD-MS:

High-Performance Liquid Chromatography with a coupled mass spectrometer

GAE:

Equivalent to gallic acid

ORAC:

Oxygen Radical Absorbance Capacity

TPC:

Total Phenolic Content

TSC:

Total Solids Content

References

  1. U.R. Charrondiere, B. Stadlmayr, D. Rittenschober, F. Grande, V. Nowak, Food Agric. Organ. United Nations 4, 40 (2020)

    Google Scholar 

  2. A. Baiano, Molecules 19, 14821 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  3. ÉS. Almeida, D. de Oliveira, D. Hotza, Compr. Rev. Food Sci. Food Saf. (2019)

  4. A.A.S. CORREIA, M.L.C. GONZAGA, A.C. AQUINO, P.H.M. SOUZA, R.W. FIGUEIREDO, and G. A. MAIA, Foods Nutr. Araraquara 22, 609 (2019)

  5. S.C. Nelson, C.R. Elevitch, Noni Complet. Guid. Consum. Grow (Permanent Agriculture Resources, Holualoa, Hawaii., 2006), pp. 67–80

  6. R. Singh, J. Diabetes Endocrinol. 3, 77 (2012)

    Article  Google Scholar 

  7. M. Saminathan, R.B. Rai, K. Dhama, R. Tiwari, S. Chakraborty, G.J. Ranganath, K. Kannan, Int. J. Pharmacol. 9, 462 (2013)

    Article  CAS  Google Scholar 

  8. R. Abou Assi, Y. Darwis, I.M. Abdulbaqi, A.A. Khan, L. Vuanghao, M.H. Laghari, Arab. J. Chem. 10, 691 (2017)

    Article  CAS  Google Scholar 

  9. Y.Y. Wu, K. Xing, X.X. Zhang, H. Wang, Y. Wang, F. Wang, J.M. Li, Molecules 22, 1 (2017)

    Google Scholar 

  10. A.P.A. Prudêncio, E.S. Prudêncio, R.D.M.C. Amboni, A.N.N. Murakami, M. Maraschin, J.C.C. Petrus, P.J. Ogliari, R.S. Leite, Food Bioprod. Process. 90, 399 (2012)

    Article  Google Scholar 

  11. P. Orellana-Palma, G. Petzold, N. Torres, M. Aguilera, J. Food Process. Preserv 42, 1 (2018)

    Article  Google Scholar 

  12. M. Aider, D. De Halleux, I. Melnikova, Food Bioprocess. Technol. 2, 80 (2009)

    Article  CAS  Google Scholar 

  13. P. Orellana-Palma, G. Petzold, M. Guerra-Valle, M. Astudillo-Lagos, Food Biosci. 20, 149 (2017)

    Article  CAS  Google Scholar 

  14. M.M.M. Xavier, A.V. Machado, R. de O. Costa, Brazilian J. Agrotechnology 4, 6 (2014)

    Google Scholar 

  15. N.A.A.M. Shalan, N.M. Mustapha, S. Mohamed, Nutrition 33, 42 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. N.A.A.M. Shalan, N.M. Mustapha, S. Mohamed, Food Chem. 212, 443 (2016)

    Article  Google Scholar 

  17. W.T. Adorno, K. Rezzadori, G.D. Arend, V.C. Chaves, F.H. Reginatto, M. Di Luccio, J.C.C. Petrus, Int. J. Food Sci. Technol. 52, 781 (2017)

    Article  CAS  Google Scholar 

  18. M. Aider, W. Ben Ounis, Int. J. Food Sci. Technol. 47, 195 (2012)

    Article  CAS  Google Scholar 

  19. F. Khajehei, M. Niakousari, M.H. Eskandari, M. Sarshar, J. Food Process. Eng. 38, 488 (2015)

    Article  Google Scholar 

  20. V.L. SINGLETON, J.A. ROSSI, Am. J. Enol. Vitic 16, 44 (1965)

    Article  Google Scholar 

  21. A.B. Martin-Diana, N. Izquierdo, I. Albertos, M.S. Sanchez, A. Herrero, M.A. Sanz, D. Rico, J. Food Process. Preserv 41, 1 (2017)

    Article  Google Scholar 

  22. A. of O. A. C. (AOAC), Official Methods of Analysis of AOAC International, 18th, Revisi ed. (Maryland, USA, 2010)

  23. B.L. Koop, M.A. Knapp, M. Di Luccio, V.Z. Pinto, L. Tormen, G.A. Valencia, A.R. Monteiro, Plant. Foods Hum. Nutr. 76, 90 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. G.D. Arend, W.T. Adorno, K. Rezzadori, M. Di Luccio, V.C. Chaves, F.H. Reginatto, J.C.C. Petrus, J. Food Eng. 201, 36 (2017)

    Article  CAS  Google Scholar 

  25. W. Brand-Williams, M.E. Cuvelier, C. Berset, Food Sci. Technol. 28, 25 (1995)

    CAS  Google Scholar 

  26. C.A. Mazzucotelli, G.A. González-Aguilar, M.A. Villegas-Ochoa, A.J. Domínguez-Avila, M.R. Ansorena, K.C. Di Scala, J. Food Biochem. 42, 1 (2018)

    Article  Google Scholar 

  27. A.A. Prestes, S. Verruck, M.O. Vargas, M.H.M. Canella, C.C. Silva, E.L. da Silva Barros, A. Dantas, L.V.A. de Oliveira, B.M. Maran, M. Matos, C.V. Helm, E.S. Prudencio, Food Res. Int. 141, (2021)

  28. Y. Yuan, C. Li, Q. Zheng, J. Wu, K. Zhu, X. Shen, J. Cao, Food Hydrocoll. 89, 735 (2019)

    Article  CAS  Google Scholar 

  29. B.C. Bremer Boaventura, E.L. da Silva, R.H. Liu, E.S. Prudêncio, P.F. Di Pietro, A.M. Becker, R.D. de M.C. Amboni, LWT - Food Sci. Technol. 62, 948 (2015)

    Article  Google Scholar 

  30. M. Aider, D. de Halleux, I. Melnikova, J. Food Eng. 88, 373 (2008)

    Article  CAS  Google Scholar 

  31. S. Benedetti, E.S. Prudêncio, G.L. Nunes, K. Guizoni, L.A. Fogaça, J.C.C. Petrus, J. Food Eng. 160, 49 (2015)

    Article  CAS  Google Scholar 

  32. P. Orellana-Palma, Y. González, G. Petzold, Chem. Eng. Technol. 925 (2019)

  33. M. Aider, D. de Halleux, J. Food Eng. 85, 65 (2008)

    Article  Google Scholar 

  34. M. Tanaka, M. Sato, J. Chem. Phys. 126, 1 (2007)

    Article  Google Scholar 

  35. F.G.F. Qin, Z. Ding, K. Peng, J. Yuan, S. Huang, R. Jiang, Y. Shao, J. Food Eng. 291, 110270 (2021)

    Article  CAS  Google Scholar 

  36. N.Z. Safiei, B.J. Shaikh, Alaudin, Mater. Today Proc. (2021)

  37. B.C.B. Boaventura, A.N.N. Murakami, E.S. Prudêncio, M. Maraschin, F.S. Murakami, E.R. Amante, R.D. de M.C. Amboni, Food Res. Int. 53, 686 (2013)

    Article  CAS  Google Scholar 

  38. A.A.F. Zielinski, D.M. Zardo, A. Alberti, D.G. Bortolini, L. Benvenutti, I.M. Demiate, A. Nogueira, J. Sci. Food Agric. 99, 2786 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. J. Sánchez, Y. Ruiz, J.M. Auleda, E. Hernández, M. Raventós, Food Sci. Technol. Int. 15, 303 (2009)

    Article  Google Scholar 

  40. F. Belén, S. Benedetti, J. Sánchez, E. Hernández, J.M. Auleda, E.S. Prudêncio, J.C.C. Petrus, M. Raventós, J. Food Eng. 116, 681 (2013)

    Article  Google Scholar 

  41. J. Sánchez, E. Hernández, J.M. Auleda, M. Raventós, J. Food Eng. 103, 147 (2011)

    Article  Google Scholar 

  42. M.C. Bourne, Food Texture and Viscosity: Concept and Measurement, 2nd Editio (Academic Press, Elsevier Inc., New York, USA, 2002)

  43. G. Schramm, Reologia e Reometria: Fundamentos Teóricos e Práticos, 1a ed. (Artliber LTDA, 2006)

  44. ÉS. Almeida, D. Oliveira, D. Hotza, Compr. Rev. Food Sci. Food Saf. 00, 1541 (2019)

    Google Scholar 

  45. Y. Chan-Blanco, F. Vaillant, A. Mercedes Perez, M. Reynes, J.M. Brillouet, P. Brat, J. Food Compos. Anal. 19, 645 (2006)

    Article  Google Scholar 

  46. M. Thompson, S.L.R. Ellison, R. Wood, Pure Appl. Chem. 74, 835 (2002)

    Article  CAS  Google Scholar 

  47. Y.L. Lin, Y.Y. Chang, D.J. Yang, B.S. Tzang, Y.C. Chen, Food Chem. 140, 31 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. Y.L. Lin, C.H. Chou, D.J. Yang, J.W. Chen, B.S. Tzang, Y.C. Chen, Plant. Foods Hum. Nutr. 67, 294 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. M. Bittová, D. Hladůvková, V. Roblová, S. Kráčmar, P. Kubáň, V. Kubáň, Nat. Prod. Commun. 10, 1817 (2015)

    PubMed  Google Scholar 

  50. D. Nowak, M. Gośliński, K. Przygoński, E. Wojtowicz, Eur. Food Res. Technol. 244, 1897 (2018)

    Article  CAS  Google Scholar 

  51. M. Natsume, N. Osakabe, M. Oyama, M. Sasaki, S. Baba, Y. Nakamura, T. Osawa, J. Terao, Free Radic. Biol. Med. 34, 840 (2003)

    Article  CAS  PubMed  Google Scholar 

  52. A.K. Palu, J.R. Wadsworth, D. Kasteler, J. Smith, Regul. Toxicol. Pharmacol. 88, 362 (2017)

    Article  PubMed  Google Scholar 

  53. W.N.F. Wan Osman, N.A. Che Ahmad Tantowi, S.F. Lau, S. Mohamed, J. Food Biochem. 43, 1 (2018)

    Google Scholar 

  54. N. Ahmadi, S. Mohamed, H. Sulaiman, Rahman, R. Rosli, J. Food Biochem. 43, 1 (2019)

    Article  Google Scholar 

  55. M. Ay, A. Charli, H. Jin, V. Anantharam, A. Kanthasamy, A.G. Kanthasamy, Nutraceuticals Effic. Saf. Toxic (Academic Press, 2016), pp. 447–452

  56. S. Deng, A.K. Palu, B.J. West, C.X. Su, B.N. Zhou, J.C. Jensen, J. Nat. Prod. 70, 859 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. V. Nitteranon, G. Zhang, B.J. Darien, K. Parkin, Food Res. Int. 44, 2271 (2011)

    Article  CAS  Google Scholar 

  58. M. Masuda, K. Murata, A. Fukuhama, S. Naruto, T. Fujita, A. Uwaya, F. Isami, H. Matsuda, J. Nat. Med. 63, 267 (2009)

    Article  CAS  PubMed  Google Scholar 

  59. S. Deng, B.J. West, C.J. Jensen, Food Chem. 111, 526 (2008)

    Article  CAS  PubMed  Google Scholar 

  60. E. de S. Sevalho, W.C. Rocha, Conex. Ci. 12, 72 (2017)

    Article  Google Scholar 

  61. D. Krishnaiah, A. Bono, R. Sarbatly, S.M. Anisuzzaman, J. King Saud Univ. - Eng. Sci. 27, 63 (2015)

    Article  Google Scholar 

  62. L.J. Correa, R.Y. Ruiz, F.L. Moreno, J. Food Process. Eng. 41, 1 (2018)

    Article  Google Scholar 

  63. L.C.S. Nascimento, N.R. da Rodrigues, M.P.C. Alves, A.U.O. Sabaa Srur, J.L. Barbosa, Junior, M.I.M.J. Barbosa, Int. Food Res. J. 25, 870 (2018)

    CAS  Google Scholar 

  64. A.M.M. Shami, AASCIT J. Biol. 1, 75 (2016)

    Google Scholar 

  65. B. Ou, D. Huang, M. Hampsch-Woodill, J.A. Flanagan, E.K. Deemer, J. Agric. Food Chem. 50, 3122 (2002)

    Article  CAS  PubMed  Google Scholar 

  66. D. Ryu, E. Koh, Food Chem. 267, 157 (2018)

    Article  CAS  PubMed  Google Scholar 

  67. D.T. Wu, Y. Fu, H. Guo, Q. Yuan, X.R. Nie, S.P. Wang, R.Y. Gan, Int. J. Biol. Macromol. 168, 733 (2021)

    Article  CAS  PubMed  Google Scholar 

  68. X. Liu, J. Shi, J. Yi, X. Zhang, Q. Ma, S. Cai, Lwt 138, 110782 (2021)

    Article  CAS  Google Scholar 

  69. E. De Santiago, G. Pereira-Caro, J.M. Moreno-Rojas, C. Cid, M.P. De Peña, J. Agric. Food Chem. 66, 5832 (2018)

    Article  PubMed  Google Scholar 

  70. M.E. Dalmau, P.J. Llabrés, V.S. Eim, C. Rosselló, S. Simal, J. Sci. Food Agric. 99, 1055 (2019)

    Article  CAS  PubMed  Google Scholar 

  71. A.L. Lee, Y.P. Yu, J.F. Hsieh, M.I. Kuo, Y.S. Ma, C.P. Lu, Int. J. Biol. Macromol. 113, 601 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. Y.Y. Thoo, S.K. Ho, F. Abas, O.M. Lai, C.W. Ho, C.P. Tan, Molecules 18, 7004 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors grateful for the collaboration of the Laboratory of Mass Transfer, and the Membrane Processes Laboratory, both in the Department of Chemical Engineering and Food Engineering (EQA/UFSC), which provided the infrastructure that allowed us to perform all experimental tests. We thank the Analytical Center, Federal University of Fronteira Sul, Laranjeiras do Sul, PR; that made it possible to perform the chromatographic tests. The authors are else grateful to CAPES-PRINT, Project number.

Funding

This work was funded by CNPq (National Council of Scientific and Technological Development, Brazil), FAPESC (Santa Catarina State Research and Innovation Support, Brazil), which provide financial support to this study.

Author information

Authors and Affiliations

Authors

Contributions

ÉSA and GDA contributed substantially in the conceptualization, methodology, validation, investigation, formal analysis, and writing - original draft preparation. MAK, KR and SV contributed to the formal analysis and Investigation. DH and DO collaborated in supervision and Writing - Review & Editing.

Corresponding author

Correspondence to Débora de Oliveira.

Ethics declarations

Conflict of interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, É.d.S., Arend, G.D., Knapp, M.A. et al. Effect of the multi-stage block freeze concentration process on the physicochemical and biological properties of noni tea (Morinda citrifolia L.): a case study in Brazil to obtain a promising functional food. Food Measure 17, 2519–2536 (2023). https://doi.org/10.1007/s11694-022-01719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01719-1

Keywords

Navigation