Skip to main content
Log in

Composite films based on a novel protein and chitosan: characterization and properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Lacquer trees (Toxicodendron vernicifluum (Stokes) Barkl.), a significant economic tree species in China, can be availed in the wax/oil industry as its seeds residues contain 43 wt% of amino acids. Films based on Lacquer tree seeds residues protein (LSP) were prepared with casting method and characterized to evaluate the probability of the new protein resource for industry. Besides, chitosan (CH) can help enhance the LSP film performance as an additive. The films' mechanical properties, antibacterial activity and water vapor permeability were measured by tensile strength and elongation at breaking, inhibition zone test, and bottle weighting method, respectively, while Fourier transform infrared spectrum, X-ray diffraction, and scanning electron microscopy were employed to characterize the structure of films. The differences among films were evaluated by the variance analysis via Duncan's multiple range tests. As a result, CH improved the film-forming, water resistance, and mechanical properties of LSP films. CH fused well with LSP to form an agglomerated structure when the mass fraction of CH was over 50%. In addition, the film containing 75 wt% CH and 25 wt% LSP showed higher water resistance and elongation at breaking than 100% CH film. All of the LSP composition films inhibited the growth of S. aureus. However, the composite films showed lower toughness than the carbohydrate film due to the phase separation of the two polymers. LSP-based films showed high application potential for inner packaging due to their outstanding properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. F. Zhang, W. Zhang, S. Wei, Study on Chinese lacquer tree resources and fined utilization. J. Chin. Lacq. 26(2), 36–50 (2007)

    Google Scholar 

  2. J. Norman, Lacquer: technology and conservation: a comprehensive guide to the technology and conservation of Asian and European lacquer. Stud. Conserv. 51(2), 157–158 (2006). https://doi.org/10.1179/sic.2006.51.2.157

    Article  Google Scholar 

  3. Z.Y. Gao, L.N. Sha, Lacquer seed oil and the food culture of the Lisu. J. Ethnol. 6(05), 54–63 (2015)

    Google Scholar 

  4. Y.H. Dong, C.Z. Wang, K. Gong, F.L. Zhang, Research progress on chemical constituents and comprehensive application of lacquer trees. Chem. Indus. For. Prod. 29(S1), 225–232 (2009)

    CAS  Google Scholar 

  5. Y. Zhang, H. Jiang, Z. Xiao, The resources and exploitation of the seeds from Rhus verniciflua. Chin. Wild Plant Resour. 36(06), 1–4 (2017). https://doi.org/10.3969/j.issn.1006-9690.2017.06.001

    Article  CAS  Google Scholar 

  6. H. Chen, C. Wang, H. Zhou, R. Tao, J. Ye, W. Li, Characterization of polysaccharides purified from Lacquer tree seed cakes and its antioxidant activity. Nat. Prod. Res. 32(18), 2221–2224 (2018). https://doi.org/10.1080/14786419.2017.1366483

    Article  CAS  Google Scholar 

  7. B. Hassan, S.A.S. Chatha, A.I. Hussain, K.M. Zia, N. Akhtar, Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int. J. Biol. Macromol. 109, 1095–1107 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.097

    Article  CAS  Google Scholar 

  8. S. Galus, Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocoll. 85, 233–241 (2018). https://doi.org/10.1016/j.foodhyd.2018.07.026

    Article  CAS  Google Scholar 

  9. A. González, G. Gastelú, G.N. Barrera, P.D. Ribotta, C.I.Á. Igarzabal, Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 89, 758–764 (2019). https://doi.org/10.1016/j.foodhyd.2018.11.051

    Article  CAS  Google Scholar 

  10. N. Oladzadabbasabadi, A.M. Nafchi, F. Ariffin, M.M.J.O. Wijekoon, A.A. Al-Hassan, M.A. Dheyab, M. Ghasemlou, Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohyd. Polym. 277, 118876 (2022). https://doi.org/10.1016/j.carbpol.2021.118876

    Article  CAS  Google Scholar 

  11. M. Hadidi, S. Jafarzadeh, M. Forough, F. Garavand, S. Alizadeh, A. Salehabadi, A.M. Khaneghah, S.M. Jafari, Plant protein-based food packaging films: recent advances in fabrication, characterization, and applications. Trends Food Sci. Technol. 120, 154–173 (2022). https://doi.org/10.1016/j.tifs.2022.01.013

    Article  CAS  Google Scholar 

  12. S. Jafarzadeh, M. Forough, S. Amjadi, V.J. Kouzegaran, H. Almasi, F. Garavand, M. Zargar, Plant protein-based nanocomposite films: a review on the used nanomaterials, characteristics, and food packaging applications. Crit. Rev. Food Sci. Nutr. (2022). https://doi.org/10.1080/10408398.2022.2070721

    Article  Google Scholar 

  13. V. Akhila, L.S. Badwaik, Recent advancement in improvement of properties of polysaccharides and proteins based packaging film with added nanoparticles: a review. Int. J. Biol. Macromol. 203, 515–525 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.181

    Article  CAS  Google Scholar 

  14. Y.H. Dong, C.Z. Wang, J.Z. Ye, J.J. Yuan, Y. Zhou, Y.F. He, Physicochemical properties of lacquer oils. Chem. Indus. For. Prod. 32(04), 28–32 (2012)

    Google Scholar 

  15. A. Gerzhova, M. Mondor, M. Benali, M. Aider, Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions. Food Chem. 201, 243–252 (2016). https://doi.org/10.1016/j.foodchem.2016.01.074

    Article  CAS  Google Scholar 

  16. S.S. Chen, H.J. Tao, Y.J. Wang, Z.S. Ma, Process optimization of soy protein isolate-based edible films containing nanocrystalline cellulose from sunflower seed hull and chitosan. Trans. Chin. Soc. Agric. Eng. 32(8), 302–308 (2016)

    Google Scholar 

  17. W. Zhang, J. Chen, Y. Chen, W. Xia, Y.L. Xiong, H. Wang, Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohyd. Polym. 138, 59–65 (2016). https://doi.org/10.1016/j.carbpol.2015.11.031

    Article  CAS  Google Scholar 

  18. C. Zhang, Z. Wang, Y. Li, Y. Yang, X. Ju, R. He, The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chem. 272, 694–701 (2019). https://doi.org/10.1016/j.foodchem.2018.08.097

    Article  CAS  Google Scholar 

  19. B. Prandi, A. Faccini, F. Lambertini, M. Bencivenni, M. Jorba, B.V. Droogenbroek, G. Bruggeman, J. Schöber, J. Petrusan, K. Elst, S. Sforza, Food wastes from agrifood industry as possible sources of proteins: a detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chem. 286, 567–575 (2019). https://doi.org/10.1016/j.foodchem.2019.01.166

    Article  CAS  Google Scholar 

  20. S.W. Kang, M.S. Rahman, A.N. Kim, K.Y. Lee, C.Y. Park, W.L. Kerr, S.G. Choi, Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent. J. Food Sci. Technol. 54(8), 2485–2493 (2017). https://doi.org/10.1007/s13197-017-2691-8

    Article  CAS  Google Scholar 

  21. X.Z. Song, C.J. Zhou, F. Fu, Z.L. Chen, C.Q. Wu, Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Ind. Crops Prod. 43, 538–544 (2013). https://doi.org/10.1016/j.indcrop.2012.08.005

    Article  CAS  Google Scholar 

  22. Y. Gokce, B. Cengiz, N. Yildiz, A. Calimli, Z. Aktas, Ultrasonication of chitosan nanoparticle suspension: influence on particle size. Coll. Surf. A 462, 75–81 (2014). https://doi.org/10.1016/j.colsurfa.2014.08.028

    Article  CAS  Google Scholar 

  23. A.B.T. Constantino, E.E. Garcia-Rojas, Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2022.107956

    Article  Google Scholar 

  24. H. Li, X. Zhang, S. Tan, G. Tan, H. Zhang, N. Xia, L. Jiang, H. Ren, A.M. Rayan, Intelligent colorimetric soy protein isolate-based films incorporated with curcumin through an organic solvent-free pH-driven method: properties, molecular interactions, and application. Food Hydrocoll. 133, 107904 (2022). https://doi.org/10.1016/j.foodhyd.2022.107904

    Article  CAS  Google Scholar 

  25. S.J. Calva-Estrada, M. Jiménez-Fernández, E. Lugo-Cervantes, Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 11(2), 78–92 (2019). https://doi.org/10.1007/s12393-019-09189-w

    Article  CAS  Google Scholar 

  26. L. Tavares, H.K.S. Souza, M.P. Gonçalves, C.M.R. Rocha, Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll. 113, 106471 (2021). https://doi.org/10.1016/j.foodhyd.2020.106471

    Article  CAS  Google Scholar 

  27. A. Homez-Jara, L.D. Daza, D.M. Aguirre, J.A. Muñoz, J.F. Solanilla, H.A. Váquiro, Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Int. J. Biol. Macromol. 113, 1233–1240 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.057

    Article  CAS  Google Scholar 

  28. V. Mihalca, A.D. Kerezsi, A. Weber, C. Gruber-Traub, J. Schmucker, D.C. Vodnar, F.V. Dulf, S.A. Socaci, A. Farcas, C.I. Muresan, R. Suharoschi, O.L. Pop, Protein-based films and coatings for food industry applications. Polymers 13(5), 769 (2021). https://doi.org/10.3390/polym13050769

    Article  CAS  Google Scholar 

  29. S. Kumar, A. Mukherjee, J. Dutta, Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 97, 196–209 (2020). https://doi.org/10.1016/j.tifs.2020.01.002

    Article  CAS  Google Scholar 

  30. L. Sharma, C. Singh, Sesame protein based edible films: development and characterization. Food Hydrocoll. 61, 139–147 (2016). https://doi.org/10.1016/j.foodhyd.2016.05.007

    Article  CAS  Google Scholar 

  31. J.F. Su, Z. Huang, X.Y. Yuan, X.Y. Wang, M. Li, Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohyd. Polym. 79(1), 145–153 (2009). https://doi.org/10.1016/j.carbpol.2009.07.035

    Article  CAS  Google Scholar 

  32. A.R. Dudhani, S.L. Kosaraju, Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohyd. Polym. 81(2), 243–251 (2010). https://doi.org/10.1016/j.carbpol.2010.02.026

    Article  CAS  Google Scholar 

  33. S.S. Silva, B.J. Goodfellow, J. Benesch, J. Rocha, J.F. Mano, R.L. Reis, Morphology and miscibility of chitosan/soy protein blended membranes. Carbohyd. Polym. 70(1), 25–31 (2007). https://doi.org/10.1016/j.carbpol.2007.02.023

    Article  CAS  Google Scholar 

  34. P. Bergo, P.J.A. Sobral, Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocoll. 21(8), 1285–1289 (2006). https://doi.org/10.1016/j.foodhyd.2006.09.014

    Article  CAS  Google Scholar 

  35. C.O. Ferreira, C.A. Nunes, I. Delgadillo, J.A. Lopes-da-Silva, Characterization of chitosan–whey protein films at acid pH. Food Res. Int. 42(7), 807–813 (2009). https://doi.org/10.1016/j.foodres.2009.03.005

    Article  CAS  Google Scholar 

  36. W. Ma, C.H. Tang, X.Q. Yang, S.W. Yin, Fabrication and characterization of kidney bean (Phaseolus vulgaris L) protein isolate–chitosan composite films at acidic pH. Food Hydrocoll. 31(2), 237–247 (2013). https://doi.org/10.1016/j.foodhyd.2012.10.007

    Article  CAS  Google Scholar 

  37. J.M. Fan, W. Ma, G.Q. Liu, S.W. Yin, C.H. Tang, X.Q. Yang, Preparation and characterization of kidney bean protein isolate (KPI)–chitosan (CH) composite films prepared by ultrasonic pretreatment. Food Hydrocoll. 36, 60–69 (2014). https://doi.org/10.1016/j.foodhyd.2013.08.024

    Article  CAS  Google Scholar 

  38. D. Kumar, P. Kumar, J. Pandey, Binary grafted chitosan film: synthesis, characterization, antibacterial activity and prospects for food packaging. Int. J. Biol. Macromol. 115, 341–348 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.084

    Article  CAS  Google Scholar 

  39. E.M. Zadeh, S.F. O’Keefe, Y.T. Kim, J.H. Cho, Evaluation of enzymatically modified soy protein isolate film forming solution and film at different manufacturing conditions. J. Food Sci. 83(4), 946–955 (2018). https://doi.org/10.1111/1750-3841.14018

    Article  CAS  Google Scholar 

  40. J. Ji, S. Hao, W. Liu, D. Wu, T. Wang, Y. Xu, Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Coll. Surf. B 83(1), 103–107 (2011). https://doi.org/10.1016/j.colsurfb.2010.11.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (Grant No. 2018YFE0127000 and 2017YFD0600705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ma, W., Liu, Z. et al. Composite films based on a novel protein and chitosan: characterization and properties. Food Measure 17, 87–97 (2023). https://doi.org/10.1007/s11694-022-01610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01610-z

Keywords

Navigation