Skip to main content

Advertisement

Log in

Characterization of the interactions of human serum albumin with carmine and amaranth using multi-spectroscopic techniques and molecular docking

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The binding of human serum albumin (HSA) with two food pigments, carmine and amaranth, were investigated at the molecular level using fluorescence, ultraviolet absorption and molecular docking techniques. Under simulated physiological conditions, the study proposes that the type of binding between the two dyes and HSA was static. Compared with carmine (293 K: KSV = (0.36 ± 0.02) × 105 L mol−1; Kb = (1.28 ± 1.21) × 107 L mol−1), amaranth (293 K: KSV = (1.62 ± 0.06) × 105 L mol−1; Kb = (4.07 ± 2.83) × 107 L mol−1) had a stronger quenching ability and higher affinity for HSA due to its more symmetrical stereochemical structure and less steric hindrance. From Förster’s nonradiative energy transfer theory (r < 7 nm, 0.5 R0 < r < 2.0 R0), it was inferred that energy transfer from HSA to the two dyes was highly probable. Spectral analysis (synchronous fluorescence, three-dimensional fluorescence and ultraviolet spectroscopy) showed that the binding of carmine or amaranth to HSA caused changes in the microenvironment around the Tyr and Trp residues and the secondary structure of HSA. A molecular docking simulation suggested that the two isomers bound to almost the same location of HSA, close to Sudlow’s site I, but there was a significant difference in the orientation of the two molecules. Combining the molecular docking and the thermodynamic parameters (Carmine: ΔH = − (50.03 ± 13.37) kJ mol−1, ΔS = − (52.01 ± 29.79) J mol−1 K−1; Amaranth: ΔH = − (72.23 ± 8.46) kJ mol−1, ΔS = − (109.75 ± 17.11) J mol−1 K−1), it can be inferred that hydrogen bonds and van der Waals forces play a dominant role in the formation of the dye–HSA complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Eq.:

Equation

HAS:

Human serum albumin

References

  1. S. Kashanian, S.H. Zeidali, K. Omidfar, N. Shahabadi, Multi spectroscopic DNA interaction studies of sunset yellow food additive. Mol. Biol. Rep. 39, 10045–10051 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. N. Pourreza, S. Rastegarzadeh, A. Larki, Determination of allura red in food samples after cloud point extraction using mixed micelles. Food Chem. 126, 1465–1469 (2011)

    Article  CAS  Google Scholar 

  3. C. King-Thom, Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes. J. Environ. Sci. Health C 18, 51–74 (2000)

    Article  Google Scholar 

  4. W.E. Müller, U. Wollert, Human serum albumin as a ‘silent receptor’ for drugs and endogenous substances. Pharmacology 19, 59–67 (1979)

    Article  PubMed  Google Scholar 

  5. S.R. Feroz, S.B. Mohamad, N. Bujang, S.N.A. Malek, S. Tayyab, Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. J. Agric. Food Chem. 60, 5899–5908 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. K. Naveenraj, M.R. Raj, S. Anandan, Binding interaction between serum albumins and perylene-3, 4, 9, 10-tetracarboxyl ate-a spectroscopic investigation. Dyes Pigm. 94, 330–337 (2012)

    Article  CAS  Google Scholar 

  7. G.W. Zhang, N. Zhao, L. Wang, Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics. J. Lumin. 131, 2716–2724 (2011)

    Article  CAS  Google Scholar 

  8. L. Trynda-Lemiesz, Paclitaxel–HSA interaction binding sites on HSA molecule. Bioorg. Med. Chem. 12, 3269–3275 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. J.N. Tian, Y.H. Xie, Y.C. Zhao, C.F. Li, S.L. Zhao, Spectroscopy characterization of the interaction between brevifolin carboxylic acid and bovine serum albumin. Luminescence 26, 296–304 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. P. Bolel, N. Mahapatra, M. Halder, Optical spectroscopic exploration of binding of cochineal red A with two homologous serum albumins. J. Agric. Food Chem. 60, 3727–3734 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. X. Zhou, X. Li, X.G. Chen, Binding mechanism of Orange G to human serum albumin: saturation transfer difference-NMR, spectroscopic and computational techniques. Dyes Pigm. 98, 212–220 (2013)

    Article  CAS  Google Scholar 

  12. G.W. Zhang, N. Zhao, L. Wang, Probing the binding of vitexin to human serum albumin by multispectroscopic techniques. J. Lumin. 131, 880–887 (2011)

    Article  CAS  Google Scholar 

  13. F. Pasban Ziyarat, A. Asoodeh, Z. Sharif Barfeh, M. Pirouzi, J. Chamani, Probing the interaction of lysozyme with ciprofloxacin in the presence of different-sized Ag nano particles by multispectroscopic techniques and isothermal titration calorimetry. J. Biomol. Struct. Dyn. 32, 613–629 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. P. Bourassa, J. Bariyanga, H.A. Tajmir-Riahi, Binding sites of resveratrol, genistein, and curcumin with milk α- and β-caseins. J. Phys. Chem. B 117, 1287–1295 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Y.Q. Wang, H.M. Zhang, G.C. Zhang, W.H. Tao, Z.H. Fei, Z.T. Liu, Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J. Pharm. Biomed. Anal. 43, 1869–1875 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. X. Li, G. Wang, D. Chen, Y. Lu, beta-Carotene and astaxanthin with human and bovine serum albumins. Food Chem. 179, 213–221 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Huang, Z. Zhang, D. Zhang, J. Lv, Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug. Talanta 53, 835–841 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. J.R. Lakowicz, G. Weber, Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12, 4161–4170 (1973)

    Article  CAS  PubMed  Google Scholar 

  19. Q. Dan, W. Xiong, H. Liang, D. Wu, F. Zhan, Y. Chen, Characteristic of interaction mechanism between β-lactoglobulin and nobiletin: a multi-spectroscopic, thermodynamics methods and docking study. Food Res. Int. 120, 255–263 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. N. Bordenave, B.R. Hamaker, M.G. Ferruzzi, Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 5, 18–34 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. J.H. Tang, F. Luan, X.G. Chen, Binding analysis of glycyeehetinic acid to human serum albumin: fluorescence spectroscopy, ftir, and molecular modeling. Med. Chem. 14, 3210–3217 (2006)

    CAS  Google Scholar 

  22. P.D. Ross, S. Subramanian, Thermodynamics of protein association aeactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  PubMed  Google Scholar 

  23. J.M. Wang, L. Ma, Y.H. Zhang, Investigation of the interaction of deltamethrin (DM) with human serum albumin by multi-spectroscopic method. J. Mol. Struct. 1129, 160–168 (2017)

    Article  CAS  Google Scholar 

  24. Y.S. Chen, Y.F. Zhou, M. Chen, Isorenieratene interaction with human serum albumin: Multi-spectroscopic analyses and docking simulation. Food Chem. 258, 393–399 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. G.F. Shen, T.T. Liu, Q. Wang, Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin(BSA). J. Photochem. Photobiol. B 153, 380–390 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. F. Ding, N. Li, B. Han, F. Liu, L. Zhang, Y. Sun, The binding of C.I. acid red 2 to human serum albumin: determination of binding mechanism and binding site using fluorescence spectroscopy. Dyes Pigm. 83, 249–257 (2009)

    Article  CAS  Google Scholar 

  27. Y. Zhu, R. Zhang, Y. Wang, J. Ma, K. Li, Z. Li, Biophysical study on the interaction of an anesthetic, vecuronium bromide with human serum albumin using spectroscopic and calorimetric methods. J. Photochem. Photobiol. B 140, 381–389 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. F. Hao, M. Jing, X. Zhao, R. Liu, Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion. J. Photochem. Photobiol. B 143, 100–106 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. F.S. Mohd, S.K. Mohd, M.H. Fohad, B. Bilqees, Deciphering the binding of carbendazim (fungicide) with human serum albumin: a multi-spectroscopic and molecular modelling studies. J. Biomol. Struct. Dyn. 37, 2230–2241 (2019)

    Article  Google Scholar 

  30. T. Li, P. Hu, T. Dai, P. Li, X. Ye, J. Chen, C. Liu, Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Spectrochim. Acta A 201, 197–206 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Henan science and technology research project (182102110286) and Key scientific research project of colleges and universities in Henan Province (18A550014). We thank Philip Creed, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn/), for editing the language of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, J-JC; project administration, JW; resources, J-HC; software, WL; supervision, JW; writing—original draft, JW.

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Characterization of the interactions of human serum albumin with carmine and amaranth using multi-spectroscopic techniques and molecular docking”. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cheng, Jj., Cheng, Jh. et al. Characterization of the interactions of human serum albumin with carmine and amaranth using multi-spectroscopic techniques and molecular docking. Food Measure 16, 4345–4354 (2022). https://doi.org/10.1007/s11694-022-01529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01529-5

Keywords

Navigation