Skip to main content
Log in

Characterization and microencapsulation of Lactobacillus plantarum FI 8595 cell free metabolites with enhanced antimicrobial property by powdered propolis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The concerns about synthetic preservatives on human health lead the food industry and scientists to seek natural agents from natural sustainable sources; including plants, animals, and microorganisms. In this study, it was aimed to characterise and enhance the bioactivity of microencapsulated cell free supernatant (CFS) of Lactobacillus plantarum FI 8595 by powdered propolis (PP) against fish spoilage bacteria and food-borne pathogens. CFS mainly consisted of n-hexadecanoic acid (27.44%) and 1-hexadecene (19.59%), while PP had primarily 2-furanmethanol (46.17%) and 2-ethyl hexanal (13.98%). Proteus mirabilis was the most resistant strain towards CFS, with inhibition zone of 8.43 mm. Addition of PP into CFS enhanced antimicrobial activity of lactobacilli CFS. Microencapsulated CFS with PP exerted higher inhibition zone (15 mm) than their pure form (9.33 mm) against Enterococcus faecalis. Staphylococcus aureus and Salmonella Paratyphi A exhibited stronger susceptibility versus pure and microencapsulated samples. Bacteriostatic effect of microencapsulated CFS was found at dose of 25 mg/ml for P. mirabilis, and 50 mg/ml for Pseudomonas luteola, E. faecalis, and P. damselae. All bacteria apart from P. luteola kept growing at 50 mg/ml dose of microencapsulated CFS, whereas microencapsulated CFS in combination with PP fully killed all bacteria at this dose. Results revealed that combinations of microencapsulated CFS and PP could be a good alternative to control microbial growth in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. T. Dinev, G. Beev, M. Tzanova, S. Denev, D. Dermendzhieva, A. Stoyanova, Bulg. J. Vet. Med. 21, 1–16 (2018)

    Article  Google Scholar 

  2. F. Saeed, M. Afzaal, T. Tufail, A. Ahmad, Act. Antimicrob. Food Packag. (2019)

  3. X. Xu, A. Liu, S. Hu, I. Ares, M.R. Martínez-Larrañaga, X. Wang, A. Anadón, M.A. Martínez, Food. Chem. 353, 129488 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. J. Mahmud, R.A. Khan, Adv. Microbiol. 8, 894–916 (2018)

    Article  CAS  Google Scholar 

  5. O. Ogunkalu, R. Khalily, Y. Salci, Eurasian J. Agric. Res. 2, 74–84 (2008)

    Google Scholar 

  6. C. Miranda, D. Contente, G. Igrejas, S.P.D.A. Câmara, M.D.L.E. Dapkevicius, P. Poeta, Foods. 10, 1–21 (2021)

    Article  Google Scholar 

  7. T.H. Lin, T.M. Pan, J. Microbiol. Immunol. Infect. 52, 409–417 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. E. Mani-López, D. Arrioja-Bretón, A. López-Malo, Compr. Rev. Food Sci. Food Saf. 21, 604–641 (2022)

    Article  PubMed  Google Scholar 

  9. A. Ołdak, D. Zielińska, A. Rzepkowska, D. Kołożyn-Krajewska, BioMed. Res. Int. 2017, 1–10 (2017)

    Article  Google Scholar 

  10. Z. Muhammad, R. Ramzan, A. Abdelazez, A. Amjad, M. Afzaal, S. Zhang, S. Pan, Pathogens 8, 1–20 (2019)

    Google Scholar 

  11. A. Cebeci, C. Gürakan, Food Microbiol. 20, 511–518 (2003)

    Article  Google Scholar 

  12. D.S. Dezmirean, C. Paşca, A.R. Moise, O. Bobiş, Plants 10, 1–20 (2021)

    Google Scholar 

  13. M.S. Almuhayawi, Saudi J. Biol. Sci. 27, 3079–3086 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. MilojkovićOpsenica, P. Ristivojević, J. Trifković, I. Vovk, D. Lušić, Ž Tešić, J. Chromatogr. Sci. 54, 1077–1083 (2016)

    Article  Google Scholar 

  15. K. Pobiega, K. Kraśniewska, D. Derewiaka, M. Gniewosz, J. Food Sci. Technol 56, 5386–5395 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Huang, Y. Yuan, X. Baojun, Food Rev. Int. (2021). https://doi.org/10.1080/87559129.2021.1963978

    Article  Google Scholar 

  17. N. Sharif, S. Khoshnoudi-Nia, S.M. Jafari, Food Res. Int. 132, 1–18 (2020)

    Article  Google Scholar 

  18. J. Castro-Rosas, C.R. Ferreira-Grosso, C.A. Gómez-Aldapa, E. Rangel-Vargas, M.L. Rodríguez-Marín, F.A. Guzmán-Ortiz, R.N. Falfan-Cortes, Food Res. Int. 102, 575–587 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. L. Pachuau, P.K. Roy, J.H. Zothantluanga, S. Ray, S. Das, in Bioactive Natural Products for Pharmaceutical Applications (Springer, Cham, 2021), pp. 687–714

    Book  Google Scholar 

  20. G.C. Raddatz, C.R.D. Menezes, Ciênc Rural 51, 1–8 (2021)

    Article  Google Scholar 

  21. A. Burgut, J. Food Saf. 41, e12863 (2021)

    Article  CAS  Google Scholar 

  22. E. Kuley, H. Yazgan, Y. Özogul, Y. Ucar, M. Durmus, G. Özyurt, D. Ayas, Food Biosci. 44, 101417 (2021)

    Article  CAS  Google Scholar 

  23. E. Kuley, M. Durmus, Y. Ucar, A.R. Kosker, E.T.A. Tumerkan, J.M. Regenstein, F. Ozogul, Food Biosci. 24, 127–136 (2018)

    Article  CAS  Google Scholar 

  24. M.Y. Lin, C.L. Yen, J. Agric. Food Chem. 47, 1460–1466 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. F. Marcela, C. Lucía, F. Esther, M. Elena, J. Encapsulation Adsorpt. Sci. 6, 1–8 (2016)

    Article  CAS  Google Scholar 

  26. N. Hwanhlem, T. Ivanova, T. Haertl´e, E. Jaffr`es, X. Dousset, LWT-Food Sci. Technol. 82, 170–175 (2017)

    Article  CAS  Google Scholar 

  27. S.M.B. Hashemi, D. Jafarpour, J. Food Process. Preserv. 44, e14651 (2020)

    CAS  Google Scholar 

  28. Clinical and Laboratory Standards Institute, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Wayne, PA: CLSI, (2008)

  29. Y. Li, B. Tang, J. Chen, P. Lai, Food Sci. Technol. 38, 530–536 (2017)

    Article  Google Scholar 

  30. K. MisSolval, J.D. Bankston, P.J. Bechtel, S. Sathivel, J. Food Sci. 81(3), 600–609 (2016)

    Article  Google Scholar 

  31. A.F. Yeşilsu, G. Özyurt, J. Food Eng. 240, 171–182 (2019)

    Article  Google Scholar 

  32. R.V. Fernandes, S.V. Borges, D.A. Botrel, Carbohydr. Polym. 101, 524–532 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. M. Moradi, S.A. Kousheh, H. Almasi, A. Alizadeh, J.T. Guimarães, N. Yılmaz, A. Lotfi, Compr. Rev. Food Sci. Food Saf. 19, 3390–3415 (2020)

    Article  PubMed  Google Scholar 

  34. F. Salleh, M.N. Lani, N.A. Kamaruding, T.Z.T. Chilek, N. Ismail, Appl. Food Biotechnol. 8, 121–132 (2021)

    CAS  Google Scholar 

  35. U. George-Okafor, U. Ozoani, F. Tasie, K. Mba-Omeje, Sci. Afr. 8, e00395 (2020)

    Google Scholar 

  36. M.C. Marcucci, Apidologie 26, 83–99 (1995)

    Article  CAS  Google Scholar 

  37. D. Devequi-Nunes, B.A.S. Machado, G.D.A. Barreto, J. Rebouças Silva, D.F. da Silva, J.L.C. Rochada, H.N. Brandao, V.M. Borges, M.A. Umsza-Guez, PLoS ONE 13(12), 1–20 (2018)

    Article  Google Scholar 

  38. S. Silici, S. Kutluca, J. Ethnopharmacol. 99, 69–73 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. W. Liu, L. Miao, X. Li, Z. Xu, Coord. Chem. Rev. 429, 213646 (2021)

    Article  CAS  Google Scholar 

  40. I. Przybyłek, T.M. Karpiński, Molecules 24, 1–17 (2019)

    Article  Google Scholar 

  41. E.E. Imade, S.E. Omonigho, O.O. Babalola, B.J. Enagbonma, Ann. Microbiol. 71, 1–14 (2021)

    Article  Google Scholar 

  42. H. Yazgan, Eur. J. Sci. Technol. 20, 485–489 (2020)

    Google Scholar 

  43. I.A.A. Raheem, A.A. Razek, A.A. Elgendy, N.M. Saleh, M.I. Shaaban, F.K. Abd El-Hady, Int. J. Nanomed. 14, 8379–8398 (2019)

    Article  CAS  Google Scholar 

  44. E.M. Muli, J.M. Maingi, J. Venom. Anim. Toxins Incl. Trop. Dis. 13, 655–663 (2007)

    Article  Google Scholar 

  45. M.G. Shehata, F.T. Ahmad, A.N. Badr, S.H. Masry, S. El-Sohaimy, Ann. Agric. Sci. 65, 209–217 (2020)

    Article  Google Scholar 

  46. A.G. Evangelista, J.A.F. Corrêa, J.V.G. Dos Santos, E.H.C. Matté, M.M. Milek, G.C. Biauki, L.B. Costa, F.B. Luciano, Microbiology 167, 001102 (2021)

    Article  CAS  Google Scholar 

  47. G. Casillas-Vargas, C. Ocasio-Malavé, S. Medina, C. Morales-Guzmán, R.G. Del Valle, N.M. Carballeira, D.J. Sanabria-Ríos, Prog. Lipid Res. 82, 1–10 (2021)

    Article  Google Scholar 

  48. A.H.C. Lam, N. Sandoval, R. Wadhwa, J. Gilkes, T.Q. Do, W. Ernst, S.M. Chiang, H.H. Kosina Xu, G. Fujii, E. Porter BMC Res. Notes 9, 1–11

  49. S. Yogeswari, S. Ramalakshmi, R. Neelavathy, J.Y. Muthumary, Glob. J. Pharmacol. 6, 65–71 (2012)

    Google Scholar 

  50. J.A. Hinton, K.D. Ingram, J. Food Protect. 63, 1282–1286 (2000)

    Article  CAS  Google Scholar 

  51. F.R. Kalt, I.E. Cock, Pharmacogn Mag. 10, 37–49 (2014)

    Article  CAS  Google Scholar 

  52. F. Patrignani, L. Iucci, N. Belletti, F. Gardini, M.E. Guerzoni, R. Lanciotti, Int. J. Food Microbiol. 123, 1–8 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. K.M. Park, H.J. Kim, J.Y. Choi, M. Koo, Foods 10, 1–13 (2021)

    Google Scholar 

  54. N. Ziklo, M. Bibi, P. Salama, Cosmetics 8, 1–18 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the academic staff of department of Seafood and Processing Technology, Faculty of Fisheries, Cukurova University (Adana, Turkey), who provided support in carrying out the work.

Author information

Authors and Affiliations

Authors

Contributions

AB: Investigation, conceptualization, methodology, writing–original draft, review & editing.

Corresponding author

Correspondence to Aykut Burgut.

Ethics declarations

Conflict of interest

The author wishes to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgut, A. Characterization and microencapsulation of Lactobacillus plantarum FI 8595 cell free metabolites with enhanced antimicrobial property by powdered propolis. Food Measure 16, 4355–4363 (2022). https://doi.org/10.1007/s11694-022-01524-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01524-w

Keywords

Navigation