Skip to main content
Log in

Influence of drying method on the functional and microstructural properties of starch from Oxalis tuberosa

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Due to the versatile uses of starch, worldwide demand for it is constantly growing, compelling the exploration of new potential sources for its extraction and industrialization. In this study, the functional and microstructural properties of the starch from Oxalis tuberosa dried by oven drying (ODS), freeze-drying (FDS), and spray drying (SDS), were evaluated. Regarding the particle analysis, average sizes of 33.61 μm for ODS, 35.7 μm for SDS, and 39.16 μm for FDS were found, while the convexity of the granules was higher for SDS (0.86) and FDS (0.87) compared to ODS (0.92). The crystallinity obtained by XRD was higher in ODS (37.31%) and SDS (36.23%) compared to FDS (24.55%). The clarity of the paste was highest in FDS (80.93 ± 0.66%) followed by SDS (76.33 ± 0.3%). The swelling power was higher in SDS (16.07 ± 0.7), followed by FDS (13.16 ± 1.23) and ODS (8.59 ± 0.69). Regarding the water solubility index, FDS showed the highest solubility followed by SDS and ODS. An improvement in powder flow was noticed for SDS, followed by FDS and ODS, respectively. The results showed that the properties of O. tuberosa starch varied according to the drying method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 2
Fig. 4

Similar content being viewed by others

References

  1. P. Jha, K. Dharmalingam, T. Nishizu, N. Katsuno, R. Anandalakshmi, Effect of Amylose–Amylopectin Ratios on Physical, Mechanical, and Thermal Properties of Starch-Based Bionanocomposite Films Incorporated with CMC and Nanoclay. Starch/Staerke 72, 1–26 (2020)

    Article  Google Scholar 

  2. K. Jamir, K. Seshagirirao, Isolation, characterization and comparative study of starches from selected Zingiberaceae species, a non-conventional source. Food Hydrocoll. 72, 247–253 (2017)

    Article  CAS  Google Scholar 

  3. F. Zhu, Underutilized and unconventional starches: Why should we care? Trends Food Sci. Technol. 100, 363–373 (2020)

    Article  CAS  Google Scholar 

  4. L.C. Núñez-Bretón, L.C. Cruz-Rodríguez, M.L. Tzompole-Colohua, J. Jiménez-Guzmán, M. de J. Perea-Flores, W. Rosas-Flores et al., Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking, J. Food Meas. Charact. 13, 2862–2870 (2019)

  5. A. Nawab, F. Alam, M.A. Haq, Z. Lutfi, A. Hasnain, Effect of mango kernel starch coatings on the shelf life of almond (Prunus dulcis) kernels. J. Food Process. Preserv 42, 1–7 (2018)

    Article  Google Scholar 

  6. P. Maisuthisakul, M.H. Gordon, Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem. 117, 332–341 (2009)

    Article  CAS  Google Scholar 

  7. H. Koksel, T. Masatcioglu, K. Kahraman, S. Ozturk, A. Basman, Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment. J. Cereal Sci. 47, 275–282 (2008)

    Article  CAS  Google Scholar 

  8. A. Nascimento, M.E.R.M. Cavalcanti-Mata, M.E. Martins Duarte, M. Pasquali, H.M. Lisboa, Construction of a design space for goat milk powder production using moisture sorption isotherms. J. Food Process. Eng. 42, 1–11 (2019)

    Article  Google Scholar 

  9. X. Kong, P. Zhu, Z. Sui, J. Bao, Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 172, 433–440 (2015)

    Article  CAS  Google Scholar 

  10. Rice-Determination of amylose content-Part 1: Reference method No. 6647-1). 2015

  11. I. Dankar, A. Haddarah, F.E.L. Omar, M. Pujolà, F. Sepulcre, Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 260, 7–12 (2018)

    Article  CAS  Google Scholar 

  12. N. Castanha, M.D. da Matta Junior, P.E.D. Augusto, Potato starch modification using the ozone technology. Food Hydrocoll. 66, 343–356 (2017)

    Article  CAS  Google Scholar 

  13. F.C. Felker, J.A. Kenar, J.A. Byars, M. Singh, S.X. Liu, Comparison of properties of raw pulse flours with those of jet-cooked, drum-dried flours. Lwt 96, 648–656 (2018)

    Article  CAS  Google Scholar 

  14. F.J. Warren, M.J. Gidley, B.M. Flanagan, Infrared spectroscopy as a tool to characterise starch ordered structure - A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym. 139, 35–42 (2016)

    Article  CAS  Google Scholar 

  15. M. Rojhan, L. Nouri, Antimicrobial, Physicochemical, Mechanical, and Barrier Properties of Tapioca Starch Films Incorporated with Eucalyptus Extract. J. Chem. Heal Risks 3, 43–52 (2013)

    Google Scholar 

  16. P.S.N. Kunal, A. Gaidhani*1, Mallinath Harwalkar2, Deepak Bhambere1, LYOPHILIZATION / FREEZE DRYING – A REVIEW Kunal, in World Journal of Pharmaceutical Research, 2014, pp. 15

  17. W. Jiranuntakul, C. Puttanlek, V. Rungsardthong, S. Puncha-Arnon, D. Uttapap, Amylopectin structure of heat-moisture treated starches. Starch/Staerke 64, 470–480 (2012)

    Article  CAS  Google Scholar 

  18. Y.I. Cornejo-Ramírez, O. Martínez-Cruz, C.L. Del Toro-Sánchez, F.J. Wong-Corral, J. Borboa-Flores, F.J. Cinco-Moroyoqui, The structural characteristics of starches and their functional properties. CYTA - J. Food 16, 1003–1017 (2018)

    Article  Google Scholar 

  19. J. Jane, Structural Features of Starch Granules II (Third EditElsevier Inc., 2009)

  20. Y. Monroy, S. Rivero, M.A. García, Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem 42, 795–804 (2018)

    Article  CAS  Google Scholar 

  21. R. Carmona-Garcia, A. Agurre-Cruz, H. Yee-Madeira, L.A. Bello-Pérez, Dual modification of banana starch: Partial characterization. Starch/Staerke 61, 656–664 (2009)

    Article  CAS  Google Scholar 

  22. V. Singh, S.Z. Ali, R. Somashekar, P.S. Mukherjee, Nature of Crystallinity in Native and Acid Modified Starches 9 845–854 (2007) https://doi.org/10.1080/10942910600698922

  23. K. Dome, E. Podgorbunskikh, A. Bychkov, O. Lomovsky, Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment, Polym. 2020, Vol. 12, Page 641 12 (2020), pp. 641

  24. Y.F. Chen, J. Singh, R. Archer, Potato starch retrogradation in tuber: Structural changes and gastro-small intestinal digestion in vitro. Food Hydrocoll. 84, 552–560 (2018)

    Article  CAS  Google Scholar 

  25. Y.C. Lai, S.Y. Wang, H.Y. Gao, K.M. Nguyen, C.H. Nguyen, M.C. Shih et al., Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem. 199, 556–564 (2016)

    Article  CAS  Google Scholar 

  26. X. Kong, X. Zhou, Z. Sui, J. Bao, Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches. Int. J. Biol. Macromol. 91, 1141–1150 (2016)

    Article  CAS  Google Scholar 

  27. K.S. Sandhu, N. Singh, N.S. Malhi, Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chem. 101, 938–946 (2007)

    Article  CAS  Google Scholar 

  28. L. Kaur, J. Singh, O.J. McCarthy, H. Singh, Physico-chemical, rheological and structural properties of fractionated potato starches. J. Food Eng. 82, 383–394 (2007)

    Article  CAS  Google Scholar 

  29. I.L. Herceg, A.R. Jambrak, D. Šubarić, M. Brnčić, S.R. Brnčić, M. Badanjak et al., Texture and pasting properties of ultrasonically treated corn starch. Czech J. Food Sci. 28, 83–93 (2010)

    Article  CAS  Google Scholar 

  30. X.X. Liu, H.M. Liu, L.Y. Fan, G.Y. Qin, X. De Wang, Effect of various drying pretreatments on the structural and functional properties of starch isolated from Chinese yam (Dioscorea opposita Thumb.). Int. J. Biol. Macromol. 153, 1299–1309 (2020)

    Article  CAS  Google Scholar 

  31. B. Zhang, K. Wang, J. Hasjim, E. Li, B.M. Flanagan, M.J. Gidley et al., Freeze-drying changes the structure and digestibility of B-polymorphic starches. J. Agric. Food Chem. 62, 1482–1491 (2014)

    Article  CAS  Google Scholar 

  32. W.S. Ratnayake, C. Otani, D.S. Jackson, DSC enthalpic transitions during starch gelatinisation in excess water, dilute sodium chloride and dilute sucrose solutions. J. Sci. Food Agric. 89, 2156–2164 (2009)

    Article  CAS  Google Scholar 

  33. J.C.L. Aguirre, V.D.Q. Castaño, Caracterización reológica de almidón y evaluación morfológica de 20 variedades de musáceas (musa sp.), del banco de germoplasma fedeplátano, chinchiná - Caldas, Colombia, Acta Agron. 65, 218–225 (2016)

  34. J.C. Shannon, D.L. Garwood, C.D. Boyer, in Genetics and Physiology of Starch Development, in Starch Chemistry and Technology, ed. by J. BeMiller, R. Whistler (Academic Press, 2009), pp. 23–82

  35. F. Zeng, F. Ma, F. Kong, Q. Gao, S. Yu, Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 172, 92–98 (2015)

    Article  CAS  Google Scholar 

  36. S. Hedayati, M. Niakousari, Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocoll. 81, 1–5 (2018)

    Article  CAS  Google Scholar 

  37. M. Stasiak, M. Molenda, I. Opaliñski, W. Błaszczak, Mechanical properties of native maize, wheat, and potato starches. Czech J. Food Sci. 31, 347–354 (2013)

    Article  Google Scholar 

  38. J. Wang, M. De Wit, M.A.I. Schutyser, R.M. Boom, Analysis of electrostatic powder charging for fractionation of foods. Innov. Food Sci. Emerg. Technol. 26, 360–365 (2014)

    Article  CAS  Google Scholar 

  39. M. Xu, A.S.M. Saleh, B. Gong, B. Li, L. Jing, M. Gou et al., The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Res. Int. 111, 324–333 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Erik González-Jiménez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

CRediT authorship contribution statement

Conceptualization, J.J-G. and F.E.G.-J.; methodology, T.Y. M-M., G.V.-V., and M.J.P.-F.; validation, V.P-P., Y.S.-G., and F.E.G.-J.; formal analysis, T.G.B-H. and J.J.-G.; investigation, T.Y.M-M. and L.A.-B.; resources, M.J.P.-F. and L.A.-B.; data curation, M.J.P.-F. and Y.S.-G.; writing—original draft preparation, T.G.B-H.; writing—review and editing, L.A.-B. and F.E.G.-J.; visualization, Y.S.-G.; supervision, F.E.G.-J.; project administration, J.J.-G. and F.E.G.-J.; funding acquisition, F.E.G.-J. All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Guzmán, J., Morales-Morales, T.Y., Buendía-Hernández, T.G. et al. Influence of drying method on the functional and microstructural properties of starch from Oxalis tuberosa. Food Measure 16, 3660–3669 (2022). https://doi.org/10.1007/s11694-022-01465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01465-4

Keywords

Navigation