Skip to main content
Log in

Modelling of polyphenol and flavonoid extraction from bottle gourd fruit using green and cost effective LTTM glycerol-ammonium acetate in neat and diluted forms

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The current study investigated the effectiveness of a low-cost, safe and green LTTM (low-transition-temperature mixture) GAA (glycerol-ammonium acetate) for extraction of bioactive biomolecules form bottle gourd (Lagenaria siceraria) fruit. Two forms of LTTM, neat and diluted with ethanol, were compared. Response surface methodology (RSM) was employed for optimization using the Box-Behnken design consisting of three-factors, each with three levels. Total polyphenols (TP), total flavonoids (TF), anti-radical activity (ARA), and iron chelating activity (ICA) were dependent variables, while time, temperature, speed, and solvent concentrations were independent variables. Second order polynomial models were well fitted for the responses in both solvent systems. For GAA-ethanol extraction, TP, TF, ICA, and anti-radical activity were 14.47 mg GAE/g, 4.93 mg RE/g, 12.21% and 36.43%, respectively, at optimum conditions of extraction time (42 min), temperature (42 °C), and solvent ratio (56%). For GAA extraction, the values 4.50 mg GAE/g, 2.86 mg RE/g, and 70.21% were obtained for TP, TF, and anti-radical activity, respectively, at optimized extraction conditions of speed 300 RPM, temperature 50 °C and solvent-to-solid ratio 10 mL/g. For anti-radical activity of GAA and GAA-ethanol extracts, the error rates between predicted and observed values were extremely low (3.35% and 3.88%, respectively), which demonstrated the suggested quadratic polynomial models as adequate for predicting this activity under any set of extraction conditions. With the error rate of 15.09%, the extraction of TP with GAA can also be quite adequately modelled. The study demonstrated GAA as a green and efficient solvent for extraction of polyphenols and other antioxidant biomolecules from L. siceraria fruit and the optimized process can be used for maximum extraction of antioxidants from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Atique, D. Ahmed, M. Maqsood, W. Malik, Int. J. Veg. Sci. 24, 212 (2018)

    Article  Google Scholar 

  2. R. Prajapati, M. Kalariya, S. Parmar, N. Sheth, J. Ayurveda Integr. Med. 1, 266 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  3. D. Ahmed, N. Ejaz, R. Saeed, P. Dar, Free Radicals Antioxidants 6, 44 (2016)

    Article  CAS  Google Scholar 

  4. S.M. Roopan, V. Devi Rajeswari, V.N. Kalpana, G. Elango, Appl. Microbiol. Biotechnol. 100, 1153 (2016)

    Article  PubMed  CAS  Google Scholar 

  5. M. Olszowy, Plant Physiol. Biochem. 144, 135 (2019)

    Article  PubMed  CAS  Google Scholar 

  6. M.E. Alañón, M. Ivanović, A.M. Gómez-Caravaca, D. Arráez-Román, A. Segura-Carretero, Arab. J. Chem. 13, 1685 (2020)

    Article  Google Scholar 

  7. A. Molina-Cortés, T. Sánchez-Motta, F. Tobar-Tosse, M. Quimbaya, Waste Biomass Valoriz. 11, 3453 (2020)

    Article  Google Scholar 

  8. Z. Xu, Y. Cai, Q. Ma, Z. Zhao, D. Yang, X. Xu, Molecules 26, 1729 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. J. Zeng, Y. Dou, N. Yan, N. Li, H. Zhang, J.N. Tan, Molecules 24, 11 (2019)

    Google Scholar 

  10. X. Wang, Y. Li, L. Han, J. Li, C. Liu, C. Sun, Front. Cell Dev. Biol. 9, 1 (2021)

    Google Scholar 

  11. G.J. Kontoghiorghes, C.N. Kontoghiorghe, Cells 9, 43 (2020)

    Article  Google Scholar 

  12. N. Ćujić, K. Šavikin, T. Janković, D. Pljevljakušić, G. Zdunić, S. Ibrić, Food Chem. 194, 135 (2016)

    Article  PubMed  Google Scholar 

  13. Q.W. Zhang, L.G. Lin, W.C. Ye, Chinese Med. (United Kingdom) 13, 1 (2018)

    Google Scholar 

  14. A. Y. Aydar, in Technol. Innov. Olive Oil Prod. Chain, edited by I. Muzzalupo (Intech Open Science Open Minds, 2019), pp. 11–20.

  15. M. Jancheva, S. Grigorakis, S. Loupassaki, D.P. Makris, J. Appl. Res. Med. Aromat. Plants 6, 31 (2017)

    Google Scholar 

  16. S. Goyal, N.B. Hernández, E.W. Cochran, Polym. Int. 70, 911 (2021)

    Article  CAS  Google Scholar 

  17. A. Manousaki, M. Jancheva, S. Grigorakis, D. Makris, Recycling 1, 194 (2016)

    Article  Google Scholar 

  18. A. Ghasemzadeh, H.Z. Jaafar, E. Karimi, A. Rahmat, B.M.C. Complement, Altern. Med. 14, 318 (2014)

    Google Scholar 

  19. A. Y. Aydar, in Stat. Approaches With Emphas. Des. Exp. Appl. to Chem. Process. (Intech Open Science Open Minds, 2018), pp. 157–169

  20. A.Y. Aydar, V. Rodriguez-martinez, B.E. Farkas, LWT Food Sci. Technol. 65, 304 (2016)

    Article  CAS  Google Scholar 

  21. R. Ben Mansour, W.M. Ksouri, S. Cluzet, S. Krisa, T. Richard, R. Ksouri, Evidence Based Complement. Altern. Med. 2016, 1 (2016)

    Article  Google Scholar 

  22. A.Y. Aydar, C.E. Mataracı, T.B. Sağlam, J. Food Meas. Charact. 15, 3079 (2021)

    Article  Google Scholar 

  23. P. Mladěnka, K. MacÁková, T. Filipský, L. Zatloukalová, L. Jahodář, P. Bovicelli, I.P. Silvestri, R. Hrdina, L. Saso, J. Inorg. Biochem. 105, 693 (2011)

    Article  PubMed  Google Scholar 

  24. Z. Lomozová, M.C. Catapano, M. Hrubša, J. Karlíčková, K. Macáková, R. Kučera, P. Mladěnka, J. Agric. Food Chem. 69, 5926 (2021)

    Article  PubMed  Google Scholar 

  25. A.H. Jiskani, A.Y. Aydar, D. Ahmed, J. Food Process. Preserv. 45, 1 (2021)

    Article  Google Scholar 

  26. J. Serna-Vázquez, M.Z. Ahmad, G. Boczkaj, R. Castro-Muñoz, Molecules 26, 1 (2021)

    Article  Google Scholar 

  27. M. Abbas, D. Ahmed, M.T. Qamar, S. Ihsan, Z.I. Noor, Bioresour. Technol. Reports 15, 100746 (2021)

    Article  CAS  Google Scholar 

  28. S. C. Lee, H. W. Oh, H. C. Woo, and Y. H. Kim, Biomass Convers. Biorefinery (2021). https://doi.org/10.1007/s13399-021-02213-2

  29. O.R. Alara, N.H. Abdurahman, O.A. Olalere, J. King Saud Univ. Sci. 32, 7 (2020)

    Article  Google Scholar 

  30. D. Ahmed, Y. Naseer, S. Hina, A. Bukhari, Int. J. Veg. Sci. 25, 330 (2019)

    Article  Google Scholar 

  31. Z. Yan, Y. Zhong, Y. Duan, Q. Chen, F. Li, Anim. Nutr. 6, 115 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. Sobhani, M.H. Farzaei, S. Kiani, R. Khodarahmi, Food Rev. Int. 37, 759 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Pharmacy, Forman Christian College Lahore, for providing some facilities for bioactivity evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dildar Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, R., Ahmed, D., Aydar, A.Y. et al. Modelling of polyphenol and flavonoid extraction from bottle gourd fruit using green and cost effective LTTM glycerol-ammonium acetate in neat and diluted forms. Food Measure 16, 3372–3384 (2022). https://doi.org/10.1007/s11694-022-01445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01445-8

Keywords

Navigation