Skip to main content
Log in

An alkaline-trigged and procyanidins-stabilized microparticle prepared by extruding the mixture of corn starch, zein and procyanidins

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

An alkaline-trigged release of microparticle was prepared. The microparticle was prepared by extruding the mixture of corn starch, zein and procyanidins, and the characteristics of microparticle were detected. The 90% of procyanidins was released at the beginning in pH9 buffer solution and decreased following the chasing time. Even under the extreme alkaline condition (pH 11), approximately 50% of procyanidins was detected after 2 days chasing. The microparticle prepared by extruding the mixture of corn starch and procyanidins (SP) and microparticle prepared by extruding the mixture of corn starch, zein and procyanidins (SZP) showed high antioxidant ability, and the SP displayed five times more ABTS·+ scavenging ratio than SZP. Both of them maintained the constant procyanidins release ratio of 60% and 15% in digestive juice, respectively. The change of morphology, disintegration of crystal and breakage of chemical bonds specified the relationship between procyanidins release and damage of microparticle structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SP:

Microparticle prepared by extruding the mixture of corn starch and procyanidins

SZP:

Microparticle prepared by extruding the mixture of corn starch, zein and procyanidins

References

  1. B.L. White, L.R. Howard, R.L. Prior, Release of bound procyanidins from cranberry pomace by alkaline hydrolysis. J. Agric. Food Chem. 58, 7572–7579 (2010). https://doi.org/10.1021/jf100700p

    Article  CAS  PubMed  Google Scholar 

  2. M. Ahmad, B. Ashraf, A. Gani, A. Gani, Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. Int. J. Biol. Macromol. 109, 435–442 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.122

    Article  CAS  PubMed  Google Scholar 

  3. S. Haghju, S. Beigzadeh, H. Almasi, H. Hamishehkar, Chitosan films incorporated with nettle (Urtica dioica L.) extract-loaded nanoliposomes: I. Physicochemical characterisation and antimicrobial properties. J. Microencapsul. 33, 438–448 (2016). https://doi.org/10.1080/02652048.2016.1208294

    Article  CAS  PubMed  Google Scholar 

  4. E. Chezanoglou, A.M. Goula, Co-crystallization in sucrose: a promising method for encapsulation of food bioactive components. Trends Food Sci. Technol. 114, 262–274 (2021). https://doi.org/10.1016/j.tifs.2021.05.036

    Article  CAS  Google Scholar 

  5. H. Li, Y. Li, T. Zhang, T. Liu, J. Yu, Technology, co-encapsulation of Lactobacillus paracasei with lactitol in caseinate gelation cross-linked by Zea mays transglutaminase. LWT Food Sci. 147, 111535 (2021). https://doi.org/10.1016/j.lwt.2021.111535

    Article  CAS  Google Scholar 

  6. S. Dutta, A. Kundu, A. Dutta, S. Saha, K. Banerjee, A comprehensive chemical profiling of phytochemicals from Trachyspermum ammi and encapsulation for sustained release. LWT Food Sci. 147, 111577 (2021). https://doi.org/10.1016/j.lwt.2021.111577

    Article  CAS  Google Scholar 

  7. Kathrin, F. J. F 2021. Marketing and Technology, Symrise invests in Twin Screw Extrusion Technology for Encapsulated Flavors.

  8. J. Harrington, M. Schaefer, Chapter 8—extrusion-based microencapsulation for the food industry, in Microencapsulation in the food industry. ed. by A.G. Gaonkar, N. Vasisht, A.R. Khare, R. Sobel (Academic Press, San Diego, 2014), pp. 81–84

    Google Scholar 

  9. R. Berendsen, C. Güell, M. Ferrando, Spray dried double emulsions containing procyanidin-rich extracts produced by premix membrane emulsification: effect of interfacial composition. Food Chem. 178, 251–258 (2015). https://doi.org/10.1016/j.foodchem.2015.01.093

    Article  CAS  PubMed  Google Scholar 

  10. M.J. Teng, Y.S. Wei, T.G. Hu, Y. Zhang, H. Wu, Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. J. Food Eng. 281, 109993 (2020). https://doi.org/10.1016/j.jfoodeng.2020.109993

    Article  CAS  Google Scholar 

  11. X. Huang, Y. Wang, H. Zhang, M. Zhao, Y. Fang, Construction and characterization of medium-chain triglyceride(MCT)/zein microcapsules with core–shell structure. Food Sci. 40, 21–27 (2019). https://doi.org/10.7506/spkx1002-6630-20170831-368

    Article  Google Scholar 

  12. E. Habeych, B. Dekkers, A.J. van der Goot, R. Boom, Starch–zein blends formed by shear flow. Chem. Eng. Sci. 63, 5229–5238 (2008). https://doi.org/10.1016/j.ces.2008.07.008

    Article  CAS  Google Scholar 

  13. H. Andersson, C. Öhgren, D. Johansson, M. Kniola, M. Stading, Extensional flow, viscoelasticity and baking performance of gluten-free zein-starch doughs supplemented with hydrocolloids. Food Hydrocoll. 25, 1587–1595 (2011). https://doi.org/10.1016/j.foodhyd.2010.11.028

    Article  CAS  Google Scholar 

  14. A. Homayouni, A. Amini, A.K. Keshtiban, A.M. Mortazavian, K. Esazadeh, S. Pourmoradian, Resistant starch in food industry: a changing outlook for consumer and producer. Starch 66, 102–114 (2014). https://doi.org/10.1002/star.201300110

    Article  CAS  Google Scholar 

  15. C. Franco, S. Preto, C.F. Ciacco, Studies on the susceptibility of granular cassava and com starches to enzymatic attack part I: study of the conditions of hydrolysis. Starch 39, 432–435 (2010). https://doi.org/10.1002/star.19870391207

    Article  Google Scholar 

  16. F. Villas-Boas, Y. Yamauti, M.M.S. Moretti, C.M.L. Franco, Influence of molecular structure on the susceptibility of starch to α-amylase. Carbohyd. Res. 479, 23–30 (2019). https://doi.org/10.1016/j.carres.2019.05.001

    Article  CAS  Google Scholar 

  17. R. Bai, Y. Cui, L. Luo, D. Yuan, Z. Wei, W. Yu, B. Sun, A semisynthetic approach for the simultaneous reaction of grape seed polymeric procyanidins with catechin and epicatechin to obtain oligomeric procyanidins in large scale. Food Chem. 278, 609–616 (2019). https://doi.org/10.1016/j.foodchem.2018.11.091

    Article  CAS  PubMed  Google Scholar 

  18. S. Zheng, K. Huang, C. Zhao, W. Xu, Y. Sheng, Y. Luo, X. He, Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. J. Funct. Foods 49, 362–368 (2018). https://doi.org/10.1016/j.jff.2018.09.007

    Article  CAS  Google Scholar 

  19. Y. Ji, X. Lin, J. Yu, Preparation and characterization of oxidized starch-chitosan complexes for adsorption of procyanidins. LWT Food Sci. Technol. 117, 108610 (2020). https://doi.org/10.1016/j.lwt.2019.108610

    Article  CAS  Google Scholar 

  20. J. Song, J. Zong, C. Ma, S. Chen, D. Zhang, Microparticle prepared by chitosan coating on the extruded mixture of corn starch, resveratrol, and α-amylase controlled the resveratrol release. Int. J. Biol. Macromol. 185, 773–781 (2021). https://doi.org/10.1016/j.ijbiomac.2021.06.154

    Article  CAS  PubMed  Google Scholar 

  21. F. Finocchiaro, B. Ferrari, A. Gianinetti, A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. J. Cereal Sci. 51, 28–34 (2010). https://doi.org/10.1016/j.jcs.2009.09.003

    Article  CAS  Google Scholar 

  22. Q. Li, X. Wang, J. Chen, C. Liu, T. Li, D.J. McClements, T. Dai, J. Liu, Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chem. 208, 309–317 (2016). https://doi.org/10.1016/j.foodchem.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  23. M. Sun, C. Sun, H. Xie, S. Yan, H. Yin, A simple method to calculate the degree of polymerization of alginate oligosaccharides and low molecular weight alginates. Carbohyd. Res. 486, 107856 (2019). https://doi.org/10.1016/j.carres.2019.107856

    Article  CAS  Google Scholar 

  24. D. Roberts, V. Reyes, F. Bonilla, B. Dzandu, C. Liu, A. Chouljenko, S. Sathivel, Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. LWT Food Sci. Technol. 97, 144–150 (2018). https://doi.org/10.1016/j.lwt.2018.06.036

    Article  CAS  Google Scholar 

  25. L. Chen, F. Ren, X. Yu, Z. Zhang, D. Xu, Q. Tong, Pasting investigation, SEM observation and the possible interaction study on rice starch–pullulan combination. Int. J. Biol. Macromol. 73, 45–48 (2015). https://doi.org/10.1016/j.ijbiomac.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  26. R.G. Utrilla-Coello, L.A. Bello-Pérez, E.J. Vernon-Carter, E. Rodriguez, J. Alvarez-Ramirez, Microstructure of retrograded starch: quantification from lacunarity analysis of SEM micrographs. J. Food Eng. 116, 775–781 (2013). https://doi.org/10.1016/j.jfoodeng.2013.01.026

    Article  CAS  Google Scholar 

  27. F.J. Warren, M.J. Gidley, B.M. Flanagan, Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr Polym 139, 35–42 (2016). https://doi.org/10.1016/j.carbpol.2015.11.066

    Article  CAS  PubMed  Google Scholar 

  28. Y. Sun, C. Shi, J. Yang, S. Zhong, Z. Li, L. Xu, S. Zhao, Y. Gao, X. Cui, Fabrication of folic acid decorated reductive-responsive starch-based microcapsules for targeted drug delivery via sonochemical method. Carbohyd. Polym. 200, 508–515 (2018). https://doi.org/10.1016/j.carbpol.2018.08.036

    Article  CAS  Google Scholar 

  29. X. Bai, C. Li, L. Yu, Y. Jiang, M. Wang, S. Lang, D. Liu, Development and characterization of soybean oil microcapsules employing kafirin and sodium caseinate as wall materials. LWT Food Sci. Technol. 111, 235–241 (2019). https://doi.org/10.1016/j.lwt.2019.05.032

    Article  CAS  Google Scholar 

  30. X.-R. Kong, Z.-Y. Zhu, X.-J. Zhang, Y.-M. Zhu, Effects of Cordyceps polysaccharides on pasting properties and in vitro starch digestibility of wheat starch. Food Hydrocoll. 102, 105604 (2020). https://doi.org/10.1016/j.foodhyd.2019.105604

    Article  CAS  Google Scholar 

  31. M. Zeng, Y. Huang, L. Lu, L. Fan, D. Lourdin, Effects of filler-matrix morphology on mechanical properties of corn starch–zein thermo-moulded films. Carbohyd. Polym. 84, 323–328 (2011). https://doi.org/10.1016/j.carbpol.2010.11.038

    Article  CAS  Google Scholar 

  32. A.K. Oladele, K.G. Duodu, N.M. Emmambux, Pasting, flow, thermal and molecular properties of maize starch modified with crude phenolic extracts from grape pomace and sorghum bran under alkaline conditions. Food Chem. 297, 124879 (2019). https://doi.org/10.1016/j.foodchem.2019.05.153

    Article  CAS  PubMed  Google Scholar 

  33. Y. Jing, J. Huang, X. Yu, Maintenance of the antioxidant capacity of fresh-cut pineapple by procyanidin-grafted chitosan. Postharvest Biol. Technol. 154, 79–86 (2019). https://doi.org/10.1016/j.postharvbio.2019.04.022

    Article  CAS  Google Scholar 

  34. R. Hao, Q. Li, J. Zhao, H. Li, W. Wang, J. Gao, Effects of grape seed procyanidins on growth performance, immune function and antioxidant capacity in weaned piglets. Livest. Sci. 178, 237–242 (2015). https://doi.org/10.1016/j.livsci.2015.06.004

    Article  Google Scholar 

  35. R. Paliwal, S. Palakurthi, Zein in controlled drug delivery and tissue engineering. J. Control. Release 189, 108–122 (2014)

    Article  CAS  Google Scholar 

  36. M.-J. Teng, Y.-S. Wei, T.-G. Hu, Y. Zhang, K. Feng, M.-H. Zong, H. Wu, Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. J. Food Eng. 281, 109993 (2020). https://doi.org/10.1016/j.jfoodeng.2020.109993

    Article  CAS  Google Scholar 

  37. F. Zhang, Q. Wu, Z.-C. Chen, M. Zhang, X.-F. Lin, Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system. J. Colloid Interface Sci. 317, 477–484 (2008). https://doi.org/10.1016/j.jcis.2007.09.065

    Article  CAS  PubMed  Google Scholar 

  38. D. Banerjee, R. Chowdhury, P. Bhattacharya, In-vitro evaluation of targeted release of probiotic Lactobacillus casei (2651 1951 RPK) from synbiotic microcapsules in the gastrointestinal (GI) system: experiments and modeling. LWT Food Sci. Technol. 83, 243–253 (2017). https://doi.org/10.1016/j.lwt.2017.05.011

    Article  CAS  Google Scholar 

  39. F. Bi, X. Zhang, R. Bai, Y. Liu, J. Liu, J. Liu, Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int. J. Biol. Macromol. 134, 11–19 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.042

    Article  CAS  PubMed  Google Scholar 

  40. B. Wei, H. Qi, Z. Wang, Y. Bi, J. Zou, B. Xu, X. Ren, H. Ma, The ex-situ and in-situ ultrasonic assisted oxidation of corn starch: a comparative study. Ultrason. Sonochem. 61, 104854 (2020). https://doi.org/10.1016/j.ultsonch.2019.104854

    Article  CAS  PubMed  Google Scholar 

  41. D. Domene-López, J.J. Delgado-Marín, I. Martin-Gullon, J.C. García-Quesada, M.G. Montalbán, Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. Int. J. Biol. Macromol. 135, 845–854 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  42. A.-Q. Zhao, L. Yu, M. Yang, C.-J. Wang, M.-M. Wang, X. Bai, Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocoll. 83, 465–472 (2018). https://doi.org/10.1016/j.foodhyd.2018.04.041

    Article  CAS  Google Scholar 

  43. L. Jiang, F. Jia, Y. Han, X. Meng, Y. Xiao, S. Bai, Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohyd. Polym. 261, 117877 (2021). https://doi.org/10.1016/j.carbpol.2021.117877

    Article  CAS  Google Scholar 

  44. M. Ma, Y. Yuan, S. Yang, Y. Wang, Z. Lv, Fabrication and characterization of zein/tea saponin composite nanoparticles as delivery vehicles of lutein. LWT Food Sci. Technol. 125, 109270 (2020). https://doi.org/10.1016/j.lwt.2020.109270

    Article  CAS  Google Scholar 

  45. K.M. Tavares, A.D. Campos, M.C. Mitsuyuki, B.R. Luchesi, J.M. Marconcini, Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydr. Polym. 223, 115055 (2019). https://doi.org/10.1016/j.carbpol.2019.115055

    Article  CAS  PubMed  Google Scholar 

  46. M.A. Javaid, K.M. Zia, A. Iqbal, S. Ahmad, N. Akram, X. Liu, H. Nawaz, M.K. Khosa, M. Awais, Utilization of waxy corn starch as an efficient chain extender for the preparation of polyurethane elastomers. Int. J. Biol. Macromol. 148, 415–423 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MC073)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Jiang, L., Qi, M. et al. An alkaline-trigged and procyanidins-stabilized microparticle prepared by extruding the mixture of corn starch, zein and procyanidins. Food Measure 16, 3618–3629 (2022). https://doi.org/10.1007/s11694-022-01432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01432-z

Keywords

Navigation