Skip to main content
Log in

A brief review on the recent achievements in electrochemical detection of folic acid

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present review article aimed to scrutinize findings from the studies evaluating electrochemical determination of folic acid (FA, Vitamin B9). The FA is a water-soluble chemical compound essential for various biological activities. FA deficiency in humans can be associated with some health problems. On the other hand, excessive concentrations of FA can impair the absorption of zinc and vitamin B12. Accordingly, some electrochemical sensors are available to detect the FA. The electrochemical detection with appreciable portability, rapidity, selectivity and sensitivity has made such sensing systems as tools capable of making transformational alterations in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FA:

Folic acid

AD:

Alzheimer's disease

HPLC:

High performance liquid chromatography

SERS:

Surface enhanced Raman spectroscopy

HPLC-TMS:

High-performance liquid chromatography–tandem mass spectrometry

LOD:

Limit of detection

CMEs:

Chemically modified electrodes

DPV:

Differential pulse voltammetry

SWV:

Square wave voltammetry

CV:

Cyclic voltammetry

CPEs:

Carbon paste electrodes

GCEs:

Glassy carbon electrodes

SPEs:

Screen printed electrodes

NPs:

Nanoparticles

CILPE:

Carbon ionic liquid paste electrode

CNTs:

Carbon nanotubes

1,3-DIBr:

1,3-Dipropylimidazolium bromide

MWCNTs:

Multi-walled carbon nanotubes

SCE:

Saturated calomel electrode

SWCNT:

Single-walled carbon nanotube

OMIMPF6:

1-Octyl-3-methylimidazolium hexafluorophosphate

PBS:

Phosphate buffer solution

OMC:

Ordered mesoporous carbon

PVS:

Polyvinyl sulfonic acid

PANI:

Polyaniline

AA:

Ascorbic acid

NR:

Neutral red

NWs:

Nanowires

HA:

Hydroxyapatite

rGO:

Reduced graphene oxide

MB:

Methylene blue

ErGO:

Electrochemically reduced graphene oxide

CHA:

Chronoamperometry

MIP:

Molecularly imprinted polymers

RSD:

Relative standard deviation

DPSV:

Differential pulse stripping voltammetry

GNPs:

Graphene nanoplatelets

β-CD:

β-Cyclodextrin

GO:

Graphene oxide

GONR:

Graphene oxide nanoribbon

SPCE:

Screen printed carbon electrode

GNSs:

Graphene nanosheets

PPy:

Polypyrrole

α-POM:

α-Polyoxometalate

References

  1. B. Yang, X. Li, L. Wang, J. An, T. Wang, F. Zhang, Y. Li, A water-stable MOF-AgClO4-abtz as fluorescent sensor for detection of folic acid based on inner filter effect. Talanta 217, 121019 (2020)

    Article  PubMed  CAS  Google Scholar 

  2. X.W. Li, L.G. Chen, Fluorescence probe based on an amino-functionalized fluorescentmagnetic nanocomposite for detection of folic acid in serum. ACS Appl. Mater. Interfaces 8, 31832–31840 (2016)

    Article  PubMed  CAS  Google Scholar 

  3. Y.B. Wang, M. Yang, Y.K. Ren, J. Fan, Cu-Mn codoped ZnS quantum dots-based ratiometric fluorescent sensor for folic acid. Anal. Chim. Acta 1040, 136–142 (2018)

    Article  PubMed  CAS  Google Scholar 

  4. M. Mazloum-Ardakani, S.H. Ahmadi, Z.S. Mahmoudabadi, K.T. Heydar, B.F. Mirjalili, Electrochemical behavior of dopamine at a [1,1’-binaphthalene]-4,4’-diol-modified carbon nanotube paste electrode and the simultaneous determination of dopamine, folic acid and uric acid. Anal. Methods 5, 6982–6989 (2013)

    Article  CAS  Google Scholar 

  5. W.R.W. Ismail, R.A. Rahman, N.A. AbdRahman, A. Atil, A.M. Nawi, The protective effect of maternal folic acid supplementation on childhood cancer: a systematic review and meta-analysis of case-control studies. J. Prev. Med. Public Health 52, 205 (2019)

    Article  Google Scholar 

  6. F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos. B. Eng. 172, 666–670 (2019)

    Article  CAS  Google Scholar 

  7. N. Soundarya, P. Suganthi, A review on anaemia-types, causes, symptoms and their treatments. J. Sci. Technol. Investig. 1, 1–10 (2017)

    Google Scholar 

  8. R. Dalvand, S. Mahmud, J. Rouhi, Direct growth of flower-like ZnO nanostructures on porous silicon substrate using a facile low-temperature technique. Mater. Lett. 160, 444–447 (2015)

    Article  CAS  Google Scholar 

  9. H. Beitollahi, J.B. Raoof, R. Hosseinzadeh, Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Anal. Sci. 27, 991–991 (2011)

    Article  PubMed  CAS  Google Scholar 

  10. H. Sadeghi, S.A. Shahidi, S. Naghizadeh Raeisi, A. Ghorbani-Hasan Saraei, F. Karimi, Electrochemical determination of folic acid in fruit juices samples using electroanalytical sensor amplified with CuO/SWCNTs and 1-butyl-2, 3-dimethylimidazolium hexafluorophosphate. Chem. Methodol. 4, 743–753 (2020)

    CAS  Google Scholar 

  11. X. Gao, H.Y. Yue, S. Huang, X.Y. Lin, X.P.A. Gao, B. Wang, L.H. Yao, W.Y. Wang, E.J. Guo, Synthesis of graphene/ZnO nanowire arrays/graphene foam and its application for determination of folic acid. J. Electroanal. Chem. 808, 189–194 (2018)

    Article  CAS  Google Scholar 

  12. Z. Li, R.M. Gueant-Rodriguez, D. Quilliot, M.A. Sirveaux, D. Meyre, J.L. Gueant, L. Brunaud, Folate and vitamin B12 status is associated with insulin resistance and metabolic syndrome in morbid obesity. Clin. Nutr. 37, 1700–1706 (2018)

    Article  PubMed  CAS  Google Scholar 

  13. E.S. El-Leithy, H.M. Abdel-Bar, R.A. El-Moneum, Validation of high performance liquid chromatographic method for folic acid assay. Int. J. Pharm. Sci. Invent. 7, 1–5 (2018)

    CAS  Google Scholar 

  14. M.V.D.M. Ribeiro, I.D.S. Melo, F.D.C.D.C. Lopes, G.C. Moita, Development and validation of a method for the determination of folic acid in different pharmaceutical formulations using derivative spectrophotometry. Braz. J. Pharm. Sci. 52, 741–750 (2016)

    Article  CAS  Google Scholar 

  15. S. Zhao, H. Yuan, C. Xie, D. Xiao, Determination of folic acid by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. A 1107, 290–293 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. R.J. Stokes, E. McBride, C.G. Wilson, J.M. Girkin, W.E. Smith, D. Graham, Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Appl. Spectrosc. 62, 371–376 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. A. Zayed, R. Bustami, W. Alabsi, T. El-Elimat, Development and validation of a rapid high-performance liquid chromatography–tandem mass spectrometric method for determination of folic acid in human plasma. Pharmaceuticals 11, 52 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  18. X. Chen, Q. Zhou, T. Zhang, C. Wang, Z. Yu, H. Ahamada, Z. Bai, X. Huang, Development of a sensitive chemiluminescence immunoassay for the quantification of folic acid in human serum. J. Anal. Methods Chem. 2019, 1–10 (2019)

    Google Scholar 

  19. S. Chakravarty, P. Dutta, S. Kalita, N.S. Sarma, PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching. Sens. Actuators B Chem. 232, 243–250 (2016)

    Article  CAS  Google Scholar 

  20. J. XiMa, L. Yang, L. Wang, S.Q. Wu, Y. Liu, Determination of folic acid in food by differential pulse voltammetry with ZnO@ GO nanocomposites modified glassy carbon electrode. Int. J. Electrochem. Sci 16, 150922 (2021)

    Article  CAS  Google Scholar 

  21. A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem. 284, 568–574 (2019)

    Article  CAS  Google Scholar 

  22. S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour, Fe3O4@ SiO2-NH2/CoSB modified carbon paste electrode for simultaneous detection of acetaminophen and chlorpheniramine. Adv. j. chem. A 4, 152–164 (2021)

    CAS  Google Scholar 

  23. H. Sohrabi, M.R. Majidi, O. Arbabzadeh, P. Khaaki, S. Pourmohammad, A. Khataee, Y. Orooji, Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ. Res. 204, 112082 (2022)

    Article  PubMed  CAS  Google Scholar 

  24. T. Jamali, H. Karimi-Maleh, M.A. Khalilzadeh, A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT-Food Sci. Technol. 57, 679–685 (2014)

    Article  CAS  Google Scholar 

  25. H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, A. Ayati, L. Fu, A.L. Sanati, B. Tanhaei, F. Sen, M. Shabani-nooshabadi, P. Naderi-Asrami, A. Al-Othman, A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 184, 113252 (2021)

    Article  PubMed  CAS  Google Scholar 

  26. Z. Shamsadin-Azad, M.A. Taher, S. Cheraghi, H. Karimi-Maleh, A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact. 13, 1781–1787 (2019)

    Article  Google Scholar 

  27. J.B. Raoof, R. Ojani, H. Karimi-Maleh, M.R. Hajmohamadi, P. Biparva, Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal. Methods 3, 2637–2643 (2011)

    Article  CAS  Google Scholar 

  28. S. Saghiri, M. Ebrahimi, M.R. Bozorgmehr, B. Davarnia, S.A. Shahidi, A. Ghorbani-HasanSaraei, F. Karimi, Determination of rutin in black tea samples using a nanostructure amplified electroanalytical sensor. Adv. J. Chem. A 3, 760–766 (2020)

    Google Scholar 

  29. H. Karimi-Maleh, M.L. Yola, N. Atar, Y. Orooji, F. Karimi, P.S. Kumar, J. Rouhi, M. Baghayeri, A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite. J. Colloid Interface Sci. 592, 174–185 (2021)

    Article  PubMed  CAS  Google Scholar 

  30. M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush, Ultratrace determination of cadmium ion in petrochemical sample by a new modified carbon paste electrode as voltammetric sensor. Eurasian Chem. Commun. 2, 1021–1032 (2020)

    CAS  Google Scholar 

  31. Z. Madadi, M. Soltanieh, T. Bagheri Lotfabad, S. Nazari, Green synthesis of titanium dioxide nanoparticles with Glycyrrhiza glabra and their photocatalytic activity. Asian J. Green Chem. 4, 256–268 (2019)

    Google Scholar 

  32. S. Mohammadi, A. Taheri, Z. Rezayati-Zad, Ultrasensitive and selective non-enzymatic glucose detection based on pt electrode modified by carbon nanotubes@ graphene oxide/nickel hydroxide-Nafion hybrid composite in alkaline media. Prog. Chem. Biochem. Res. 1, 1–10 (2018)

    Article  Google Scholar 

  33. H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 560, 208–212 (2020)

    Article  PubMed  CAS  Google Scholar 

  34. Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye, J. Ye, A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on Fe3O4/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode. Mater. Chem. Phys. 238, 121877 (2019)

    Article  CAS  Google Scholar 

  35. A. Taherkhani, T. Jamali, H. Hadadzadeh, H. Karimi-Maleh, H. Beitollahi, M. Taghavi, F. Karimi, ZnO nanoparticle-modified ionic liquid-carbon paste electrodefor voltammetric determination of folic acid in food and pharmaceutical samples. Ionics 20, 421–429 (2014)

    Article  CAS  Google Scholar 

  36. R. Abdi, A. Ghorbani-Hasan Saraei, S. Naghizadeh Raeisi, F. Karimi, A gallic acid food electrochemical sensor based on amplification of paste electrode by Cdo/CNTs nanocomposite and ionic liquid. J. Med. Chem. Sci. 3, 338–344 (2020)

    CAS  Google Scholar 

  37. M. Baghayeri, H. Alinezhad, M. Fayazi, M. Tarahomi, R. Ghanei-Motlagh, B. Maleki, A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim. Acta 312, 80–88 (2019)

    Article  CAS  Google Scholar 

  38. T. Eren, N. Atar, M.L. Yola, H. Karimi-Maleh, A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem. 185, 430–436 (2015)

    Article  PubMed  CAS  Google Scholar 

  39. M. Govindasamy, S.F. Wang, B. Subramanian, R.J. Ramalingam, H. Al-Lohedan, A. Sathiyan, A novel electrochemical sensor for determination of DNA damage biomarker (8-hydroxy-2′-deoxyguanosine) in urine using sonochemically derived graphene oxide sheets covered zinc oxide flower modified electrode. Ultrason. Sonochem. 58, 104622 (2019)

    Article  PubMed  CAS  Google Scholar 

  40. F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S.A. Shahidi, Electrochemical determination of Vitamin B6 in fruit juices using a new nanostructure voltammetric sensor. Asian J. Nanosci. Mater. 3, 313–320 (2020)

    CAS  Google Scholar 

  41. N.P. Shetti, S.J. Malode, D. Ilager, K. Raghava Reddy, S.S. Shukla, T.M. Aminabhavi, A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 31, 1040–1049 (2019)

    Article  CAS  Google Scholar 

  42. N. Rabiee, M. Safarkhani, M. Rabiee, Ultra-sensitive electrochemical on-line determination of clarithromycin based on poly (L-aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian J. Nanosci. Mater. 1, 63–73 (2018)

    Google Scholar 

  43. F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 176, 208–213 (2018)

    Article  PubMed  CAS  Google Scholar 

  44. Q. He, Y. Wu, Y. Tian, G. Li, J. Liu, P. Deng, D. Chen, Facile electrochemical sensor for nanomolar rutin detection based on magnetite nanoparticles and reduced graphene oxide decorated electrode. Nanomaterials 9, 115 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  45. B. Hosseini Nia, A. Anaraki Firooz, M. Ghalkhani, J. Beheshtian, Experimental study of the effect of undoped ZnO, Fe and Mn doped ZnO nanostructures and the electrochemical response of the nanostructured modified carbon paste electrode toward Levodopa. Q. J. Iran. Chem. Commun. 4, 483–492 (2016)

    Google Scholar 

  46. S.A.R. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 811, 84–88 (2018)

    Article  CAS  Google Scholar 

  47. Y.V.M. Reddy, B. Sravani, S. Agarwal, V.K. Gupta, G. Madhavi, Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly (DPA)/SiO2@ Fe3O4 modified carbon paste electrode. J. Electroanal. Chem. 820, 168–175 (2018)

    Article  CAS  Google Scholar 

  48. S. Ershad, N. Safarzadeh, H. Akhondi-Yamchi, Application of carbon ceramic modified electrode with prussian blue for electrocatalytic oxidation of nitrite ion. Q. J. Iran. Chem. Commun. 4, 256–264 (2016)

    CAS  Google Scholar 

  49. N. Hareesha, J.G.G. Manjunatha, C. Raril, G. Tigari, Design of novel surfactant modified carbon nanotube paste electrochemical sensor for the sensitive investigation of tyrosine as a pharmaceutical drug. Adv. Pharm. Bull. 9, 132 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. M. Motahharinia, H.A. Zamani, H. Karimi-Maleh, Electrochemical determination of doxorubicin in injection samples using paste electrode amplified with reduced graphene oxide/Fe3O4 nanocomposite and 1-hexyl-3-methylimidazolium hexafluorophosphate. Chem. Methodol. 5, 107–113 (2021)

    CAS  Google Scholar 

  51. M.R. Akhgar, H. Beitollahi, M. Salari, H. Karimi-Maleh, H. Zamani, Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal. Methods 4, 259–264 (2012)

    Article  CAS  Google Scholar 

  52. H. Karimi-Maleh, F. Karimi, L. Fu, A.L. Sanati, M. Alizadeh, C. Karaman, Y. Orooji, Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 423, 127058 (2022)

    Article  PubMed  CAS  Google Scholar 

  53. C. Karaman, Orange peel derived-nitrogen and sulfur Co-doped carbon dots: a nano-booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis 33, 1356–1369 (2021)

    Article  CAS  Google Scholar 

  54. A. Akça, O. Karaman, C. Karaman, Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective. ECS J. Solid State Sci. Technol. 10, 041003 (2021)

    Article  CAS  Google Scholar 

  55. Q. He, J. Shi, Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 21, 5845–5855 (2011)

    Article  CAS  Google Scholar 

  56. O. Karaman, Oxygen reduction reaction performance boosting effect of nitrogen/sulfur co-doped graphene supported cobalt phosphide nanoelectrocatalyst: pH-universal electrocatalyst. ECS J. Solid State Sci. Technol. 10, 061003 (2021)

    Article  CAS  Google Scholar 

  57. C. Karaman, O. Karaman, P.L. Show, Y. Orooji, H. Karimi-Maleh, Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ. Res. 207, 112156 (2022)

    Article  PubMed  CAS  Google Scholar 

  58. H. Pyman, H. Roshanfekr, S. Ansari, DNA-based electrochemical biosensor using chitosan–carbon nanotubes composite film for biodetection of Pirazon. Eurasian Chem. Commun. 2, 213–225 (2020)

    Article  Google Scholar 

  59. Y. Yang, M. Li, Z. Zhu, A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid. Talanta 201, 295–300 (2019)

    Article  PubMed  CAS  Google Scholar 

  60. N. Ullah, R. Ansir, W. Muhammad, S. Jabeen, Mechanistic approaches and current trends in the green synthesis of cobalt oxide nanoparticles and their applications. Asian J. Green Chem. 4, 340–354 (2019)

    Google Scholar 

  61. M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq. 278, 672–676 (2019)

    Article  CAS  Google Scholar 

  62. Y. Lai, Y. Deng, G. Yang, S. Li, C. Zhang, X. Liu, Molecular imprinting polymers electrochemical sensor based on AuNPs/PTh modified GCE for highly sensitive detection of carcinomaembryonic antigen. J. Biomed. Nanotechnol. 14, 1688–1694 (2018)

    Article  PubMed  CAS  Google Scholar 

  63. F. Garkani-Nejad, H. Beitollahi, R. Alizadeh, Sensitive determination of hydroxylamine on ZnO nanorods/graphene oxide nanosheets modified graphite screen printed electrode. Anal. Bioanal. Electrochem. 9, 134–144 (2017)

    Google Scholar 

  64. B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. J. Nanomed. Nanotechnol. 6, 1 (2015)

    Google Scholar 

  65. M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016)

    Article  PubMed  CAS  Google Scholar 

  66. A. Chen, S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42, 5425–5438 (2013)

    Article  PubMed  CAS  Google Scholar 

  67. H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 44, 5778–5792 (2015)

    Article  PubMed  CAS  Google Scholar 

  68. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  PubMed  CAS  Google Scholar 

  69. T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal, R. Oza, A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. J. Chem. Rev. 1, 260–270 (2019)

    Article  Google Scholar 

  70. L. Qian, S. Durairaj, S. Prins, A. Chen, Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 175, 112836 (2021)

    Article  PubMed  CAS  Google Scholar 

  71. A. Sinha, R. Jain, H. Zhao, P. Karolia, N. Jadon, Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Microchim. Acta 185, 1–30 (2018)

    Article  CAS  Google Scholar 

  72. P. Drogui, J.F. Blais, G. Mercier, Review of electrochemical technologies for environmental applications. Recent Pat. Eng. 1, 257–272 (2007)

    Article  CAS  Google Scholar 

  73. B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 94, 443–455 (2017)

    Article  PubMed  CAS  Google Scholar 

  74. S. Akbar, A. Anwar, Q. Kanwal, Electrochemical determination of folic acid: A short review. Anal Biochem. 510, 98–105 (2016)

    Article  PubMed  CAS  Google Scholar 

  75. B. Batra, V. Narwal, V. Kalra, M. Sharma, J.S. Rana, Folic acid biosensors: a review. Process Biochem. 92, 343–354 (2020)

    Article  CAS  Google Scholar 

  76. I. Svancara, K. Kalcher, A. Walcarius, K. Vytras, Electroanalysis with Carbon Paste Electrodes (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  77. M. Akhoundian, T. Alizadeh, M.R. Ganjali, P. Norouzi, Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs -modified electrode. Talanta 200, 115–123 (2019)

    Article  PubMed  CAS  Google Scholar 

  78. S. Tajik, A. Lohrasbi-Nejad, P. Mohammadzadeh-Jahani, M.B. Askari, P. Salarizadeh, H. Beitollahi, Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. J. Food Meas. Charact. 16, 722–730 (2022)

    Article  Google Scholar 

  79. M.D.C. Teixeira, F.S. Felix, S.S. Thomasi, Z.M. Magriotis, J.M. da Silva, L.L. Okumura, A.A. Saczk, Voltammetric determination of organic nitrogen compounds in environmental samples using carbon paste electrode modified with activated carbon. Microchem. J. 148, 66–72 (2019)

    Article  CAS  Google Scholar 

  80. M.N. Khrizanforov, D.M. Arkhipova, R.P. Shekurov, T.P. Gerasimova, V.V. Ermolaev, D.R. Islamov, V.A. Miluykov, O.N. Kataeva, V.V. Khrizanforova, O.G. Sinyashin et al., Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J. Solid State Electrochem. 19, 2883–2890 (2015)

    Article  CAS  Google Scholar 

  81. M. Arvand, M. Dehsaraei, A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles–modified carbon paste electrode. Mater. Sci. Eng. C 33, 3474–3480 (2013)

    Article  CAS  Google Scholar 

  82. F. Khaleghi, A.E. Irai, R. Sadeghi, V.K. Gupta, Y. Wen, A fast strategy for determination of vitamin B9 in food and pharmaceutical samples using an ionic liquid-modified nanostructure voltammetric sensor. Sensors 16, 747 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  83. O.J. D’Souza, R.J. Mascarenhas, A.K. Satpati, S. Detriche, Z. Mekhalif, J. Delhalle, A. Dhason, High electrocatalytic oxidation of folic acid at carbon paste electrode bulk modified with iron nanoparticle-decorated multiwalled carbon nanotubes and its application in food and pharmaceutical analysis. Ionics 23, 201–212 (2017)

    Article  CAS  Google Scholar 

  84. S. Movaghgharnezhad, A. Mirabi, Advanced nanostructure amplified strategy for voltammetric determination of folic acid. Int. J. Electrochem. Sci. 14, 10956–10965 (2019)

    Article  CAS  Google Scholar 

  85. H.E. Zittel, F.J. Miller, A glassy-carbon electrode for voltammetry. Anal. Chem. 37, 200–203 (1965)

    Article  CAS  Google Scholar 

  86. K. Pandi, M. Sivakumar, S.M. Chen, M. Sakthivel, G. Raghavi, T.W. Chen, Y.C. Liu, R. Madhu, Electrochemical synthesis of lutetium(III) hexacyanoferrate/poly (taurine) modified glassy carbon electrode for the sensitive detection of sulfite in tap water. J. Electrochem. Soc. 165, B469 (2018)

    Article  CAS  Google Scholar 

  87. A. Liao, P. Li, H. Zhang, M. Guo, Y. Xia, Z. Li, W. Huang, Highly sensitive determination of 4-nitrophenol at a nafion modified glass carbon nanofilm electrode. J. Electrochem. Soc. 164, H63 (2016)

    Article  CAS  Google Scholar 

  88. M.L. Yola, N. Atar, Simultaneous determination of β-agonists on hexagonal boron nitride nanosheets/multi-walled carbon nanotubes nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 96, 669–676 (2019)

    Article  CAS  Google Scholar 

  89. H. Karimi-Maleh, A. Khataee, F. Karimi, M. Baghayeri, L. Fu, J. Rouhi, C. Karaman, O. Karaman, R. Boukherroub, A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 291, 132928 (2022)

    Article  PubMed  CAS  Google Scholar 

  90. L. Fu, A. Wang, G. Lai, C.T. Lin, J. Yu, A. Yu, Z. Liu, K. Xie, W. Su, A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Microchim. Acta 185, 1–7 (2018)

    Article  CAS  Google Scholar 

  91. H. Rao, M. Chen, H. Ge, Z. Lu, X. Liu, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, A novel electrochemical sensor based on Au@ PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine. Biosens. Bioelectron. 87, 1029–1035 (2017)

    Article  PubMed  CAS  Google Scholar 

  92. C. Wang, C. Li, L. Ting, X. Xu, C. Wang, Application of a single-wall carbon nano-tube film electrode to the determination of trace amounts of folic acid. Microchim. Acta 152, 233–238 (2006)

    Article  CAS  Google Scholar 

  93. F. Xiao, C. Ruan, L. Liu, R. Yan, F. Zhao, B. Zeng, Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sens. Actuators B Chem. 134, 895–901 (2008)

    Article  CAS  Google Scholar 

  94. H. Yang, B. Lu, B. Qi, L. Guo, Voltammetric sensor based on ordered mesoporous carbon for folic acid determination. J. Electroanal. Chem. 660, 2–7 (2011)

    Article  CAS  Google Scholar 

  95. B. Unnikrishnan, Y.L. Yang, S.M. Chen, Amperometric determination of folic acid at multi-walled carbon nanotube-polyvinyl sulfonic acid composite film modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 3224–3237 (2011)

    CAS  Google Scholar 

  96. Z. Kun, Z. Ling, H. Yi, C. Ying, T. Dongmei, Z. Shuliang, Z. Yuyang, Electrochemical behavior of folic acid in neutral solution on the modified glassy carbon electrode: platinum nanoparticles doped multi-walled carbon nanotubes with Nafion as adhesive. J. Electroanal. Chem. 677, 105–112 (2012)

    Article  CAS  Google Scholar 

  97. S. Ershad, K. Dideban, F. Faraji, Synthesis and application of polyaniline/multi walled carbon nanotube nanocomposite for electrochemical determination of folic acid. Anal. Bioanal. Electrochem 5, 78–192 (2013)

    Google Scholar 

  98. T. Maiyalagan, J. Sundaramurthy, P.S. Kumar, P. Kannan, M. Opallo, S. Ramakrishna, Nanostructured α-Fe2O3 platform for the electrochemical sensing of folic acid. Analysis 138, 1779–1786 (2013)

    CAS  Google Scholar 

  99. J. Qu, X. Du, T. Lou, Y. Dong, L. Shi, Ultrastable method for determination of folic acid based on polyneutral red and multiwalled carbon nanotubes composite nanofilm. Micro Nano Lett. 9, 206–209 (2014)

    Article  CAS  Google Scholar 

  100. N. Lavanya, S. Radhakrishnan, N. Sudhan, C. Sekar, S.G. Leonardi, C. Cannilla, G. Neri, Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode. Nanotechnology 25, 295501 (2014)

    Article  PubMed  CAS  Google Scholar 

  101. A. Ananthi, S.S. Kumar, K.L. Phani, Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid. Electrochim. Acta 151, 584–590 (2015)

    Article  CAS  Google Scholar 

  102. P. Kanchana, C. Sekar, Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles. Spectrochim. Acta A. 137, 58–65 (2015)

    Article  CAS  Google Scholar 

  103. F. Chekin, F. Teodorescu, Y. Coffinier, G.H. Pan, A. Barras, R. Boukherroub, S. Szunerits, MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens. Bioelectron. 85, 807–813 (2016)

    Article  PubMed  CAS  Google Scholar 

  104. D. Zhang, X. Ouyang, W. Ma, L. Li, Y. Zhang, Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanalysis 28, 312–319 (2016)

    Article  CAS  Google Scholar 

  105. T. Kondori, N. Akbarzadeh-Torbati, Application of glassy carbon electrode modified with Co3O4 nanoparticles for voltammetric determination of folic acid. Anal. Bioanal. Electrochem. 10, 1211–1221 (2018)

    CAS  Google Scholar 

  106. S. Hussain, S.A. Zaidi, D. Vikraman, H.S. Kim, J. Jung, Facile preparation of molybdenum carbide (Mo2C) nanoparticles and its effective utilization in electrochemical sensing of folic acid via imprinting. Biosens. Bioelectron. 140, 111330 (2019)

    Article  PubMed  CAS  Google Scholar 

  107. J. Ramu, M. Mahanthappa, S. Yellappa, K.B. Chandrasekhar, γ-Fe2O3 nanoparticles modified glassy carbon electrode for the sensitive detection of folic acid. Mater. Res. Express. 6, 105070 (2019)

    Article  CAS  Google Scholar 

  108. J.P. Winiarski, R. Rampanelli, J.C. Bassani, D.Z. Mezalira, C.L. Jost, Multi-walled carbon nanotubes/nickel hydroxide composite applied as electrochemical sensor for folic acid (vitamin B9) in food samples. J. Food Compos. Anal. 92, 103511 (2020)

    Article  CAS  Google Scholar 

  109. M.M. Yuan, J. Zou, Z.N. Huang, D.M. Peng, J.G. Yu, PtNPs-GNPs-MWCNTs-β-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid. Anal. Bioanal. Chem. 412, 2551–2564 (2020)

    Article  PubMed  CAS  Google Scholar 

  110. J. Xi Ma, L. Yang, L. Wang, S.Q. Wu, Y. Liu, Determination of Folic Acid in Food by Differential Pulse Voltammetry with ZnO@GO Nanocomposites Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci 16, 150922 (2021)

    Article  CAS  Google Scholar 

  111. M. Alizadeh, M. Mehmandoust, O. Nodrat, S. Salmanpour, N. Erk, A glassy carbon electrode modified based on molybdenum disulfide for determination of folic acid in the real samples. J. Food Meas. Charact. 15, 5622–5629 (2021)

    Article  Google Scholar 

  112. M. Albareda-Sirvent, A. Merkoci, S. Alegret, Configurations used in the design of screen-printed enzymatic biosensors: a review. Sens. Actuators B Chem. 69, 153–163 (2000)

    Article  CAS  Google Scholar 

  113. J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal. Lett. 37, 789–830 (2004)

    Article  CAS  Google Scholar 

  114. O.D. Renedo, M.A. Alonso-Lomillo, M.A. Martínez, Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73, 202–219 (2007)

    Article  PubMed  CAS  Google Scholar 

  115. M. Tudorache, C. Bala, Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal. Bioanal. Chem. 388, 565 (2007)

    Article  PubMed  CAS  Google Scholar 

  116. J.P. Metters, R.O. Kadara, C.E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments. Analysis 136, 1067 (2011)

    CAS  Google Scholar 

  117. A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482 (2008)

    Article  PubMed  CAS  Google Scholar 

  118. V. Mani, R. Umamaheswari, S.M. Chen, M. Govindasamy, C. Su, A. Sathiyan, J.P. Merlin, M. Keerthi, Highly sensitive determination of folic acid using graphene oxide nanoribbon film modified screen printed carbon electrode. Int. J. Electrochem. Sci. 12, 475–484 (2017)

    Article  CAS  Google Scholar 

  119. V. Mani, M. Govindasamy, S.M. Chen, B. Subramani, A. Sathiyan, J.P. Merlin, Determination of folic acid using graphene/molybdenum disulfide nanosheets/gold nanoparticles ternary composite. Int. J. Electrochem. Sci. 12, e267 (2017)

    Google Scholar 

  120. M. Safaei, H. Beitollahi, M.R. Shishehbore, Modified screen printed electrode for selective determination of folic acid. Acta Chim. Slov. 66, 777–783 (2019)

    Article  PubMed  CAS  Google Scholar 

  121. M. Safaei, H. Beitollahi, M.R. Shishehbore, Amplified Electrochemical Sensor Employing Fe3O4@ SiO2/graphene Nanocomposite for Selective Determination of Folic Acid. J. Anal. Chem. 75, 95–100 (2020)

    Article  Google Scholar 

  122. R. Porada, K. Fendrych, B. Baś, Development of novel Mn-zeolite/graphite modified Screen-printed Carbon Electrode for ultrasensitive and selective determination of folic acid. Measurement 179, 109450 (2021)

    Article  Google Scholar 

  123. L. Mirmoghtadaie, A.A. Ensafi, M. Kadivar, M. Shahedi, M.R. Ganjali, Highly selective, sensitive and fast determination of folic acid in food samples using new electrodeposited gold nanoparticles by differential pulse voltammetry. Int. J. Electrochem. Sci. 8, 3755–3767 (2013)

    CAS  Google Scholar 

  124. A. Babakhanian, S. Kaki, M. Ahmadi, H. Ehzari, A. Pashabadi, Development of α-polyoxometalate–polypyrrole–Au nanoparticles modified sensor applied for detection of folic acid. Biosens. Bioelectron. 60, 185–190 (2014)

    Article  PubMed  CAS  Google Scholar 

  125. A. Sharma, S. Arya, Economical and efficient electrochemical sensing of folic acid using a platinum electrode modified with hydrothermally synthesized Pd and Ag co-doped SnO2 nanoparticles. J. Electrochem. Soc. 166, B1107 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayeh Tajik or Hadi Beitollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, M., Garkani Nejad, F., Dourandish, Z. et al. A brief review on the recent achievements in electrochemical detection of folic acid. Food Measure 16, 3423–3437 (2022). https://doi.org/10.1007/s11694-022-01421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01421-2

Keywords

Navigation