Skip to main content
Log in

An electrochemical sensor for caffeine at a carbon nanofiber modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study demonstrates the electrochemical behaviour of caffeine on an acid activated carbon nanofiber (CNF) modified glassy carbon electrode (GCE) using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) techniques. Characterization of the bare and CNF modified GCE was performed using a [Fe(CN)6]−3/−4 redox probe and caffeine in 0.1 M H2SO4. The fabrication of the electrochemical sensor was achieved simply by drop-coating the surface of GCE with CNF solution. The pristine and acid activated CNFs was characterized by electron microscopy, FTIR, Raman spectroscopy and X-ray diffraction spectroscopy. The presence CNF modifier increased the rate of electrochemical reaction, favoured the electro-oxidation of caffeine at 1.35 V in comparison to oxidation at the bare which occurred at 1.44 V, and caused a 2.35-fold current increase for caffeine at CNF modified GCE. SWV was performed in a concentration range from 25 to 450 µM and the sensor obtained a limit of detection of 17.40 µM. The proposed method was successfully validated by UV–Vis spectroscopy. This sensor lends itself to the detection of caffeine in pharmaceutical, food and beverage samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Adan, in Serra-Grabulosa in Caffeine: Chemistry, Analysis, Function and Effects. ed. by V.R. Preedy (The Royal Society of Chemistry, Cambridge, 2012), pp. 268–286. https://doi.org/10.1039/9781849734752-00268

    Chapter  Google Scholar 

  2. R. Carvalho, J. Emmerling, F. Schneider, in Caffeine: Chemistry, Analysis, Function and Effects. ed. by V.R. Preedy (The Royal Society of Chemistry, Cambridge, 2012), pp. 41–52. https://doi.org/10.1039/9781849734752-00041

    Chapter  Google Scholar 

  3. M.C. Cornelis, Nutrients, 11(2), 416 (2019). https://doi.org/10.3390/nu11020416

    Article  CAS  PubMed Central  Google Scholar 

  4. V. Sengpiel, E. Elind, J. Bacelis, S. Nilsson, J. Grove, R. Myhre, M. Haugen, H.M. Meltzer, J. Alexander, B. Jacobsson, A.L. Brantsæter, BMC Med. 11, 42 (2013). https://doi.org/10.1186/1741-7015-11-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Aepli, S. Kurth, N. Tesler, O. Jenni, R. Huber, Brain Sci. 5, 441–455 (2015). https://doi.org/10.3390/brainsci5040441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Cappelletti, D. Piacentino, V. Fineschi, P. Frati, L. Cipolloni, M. Aromatario, Nutrients 10(5), 1–13 (2018). https://doi.org/10.3390/nu10050611

    Article  CAS  Google Scholar 

  7. A.P. Winston, E. Hardwick, N. Jaberi, Adv. Psychiatr. Treat. 11(6), 432–439 (2005). https://doi.org/10.1192/apt.11.6.432

    Article  Google Scholar 

  8. M. Addicott, in Caffeine: Chemistry, Analysis, Function and Effects. ed. by V.R. Preedy (The Royal Society of Chemistry, Cambridge, 2012), pp. 230–244. https://doi.org/10.1039/9781849734752-00230

    Chapter  Google Scholar 

  9. L.I. Darakjian, A. Kaddoumi, Mol. Pharm. 16(3), 1340–1349 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b01276

    Article  CAS  PubMed  Google Scholar 

  10. G.K. Ferguson, J. Chem. Educ. 75(4), 467–469 (1998). https://doi.org/10.1021/ed075p467

    Article  CAS  Google Scholar 

  11. A.R. Pahade, S.V. Gandhi, S.R. Tapale, Curr. Trends Biotechnol. Pharm. 11(3), 309–315 (2017). ((Online))

    CAS  Google Scholar 

  12. J.P. Mafa, N. Mabuba, O.A. Arotiba, Electroanalysis 28(7), 1462–1469 (2016). https://doi.org/10.1002/elan.201501107

    Article  CAS  Google Scholar 

  13. B. Lin, J. Chen, Y. Zeng, L. Li, B. Qiu, Z. Lin, L. Guo, ACS Sens. 4(7), 1844–1850 (2019). https://doi.org/10.1021/acssensors.9b00619

    Article  CAS  PubMed  Google Scholar 

  14. K. Ghosal, K. Sarkar, ACS Biomater. Sci. Eng. 4(8), 2653–2703 (2018). https://doi.org/10.1021/acsbiomaterials.8b00376

    Article  CAS  PubMed  Google Scholar 

  15. A. Rana, N. Baig, T.A. Saleh, J. Electroanal. Chem. 833, 313–332 (2019). https://doi.org/10.1016/j.jelechem.2018.12.019

    Article  CAS  Google Scholar 

  16. M.K.S. Monteiro, S.S.M. Paiva, D.R. Da Silva, M.A. Quiroz, V.J.P. Vilar, C.A. Martinez-Huitle, E.V. Dos Santos, M.K.S. Monteiro, J. Electroanal. Chem. 839, 283–289 (2019). https://doi.org/10.1016/j.jelechem.2019.03.030

    Article  CAS  Google Scholar 

  17. R. Balaji, X.-H. Zheng, S.-M. Chen, V. Renganathan, Inorg. Chem. Commun. 118, 108014 (2020). https://doi.org/10.1016/j.inoche.2020.108014

    Article  CAS  Google Scholar 

  18. M. Shehata, S.M. Azab, A.M. Fekry, Synth. Met. 256, 116122 (2019). https://doi.org/10.1016/j.synthmet.2019.116122

    Article  CAS  Google Scholar 

  19. A.C. Power, B. Gorey, S. Chandra, J. Chapman, Nanatechnol. Rev. 7(1), 19–41 (2018). https://doi.org/10.1515/ntrev-2017-0160

    Article  CAS  Google Scholar 

  20. M. Mehmandoust, N. Erk, C. Karaman, O. Karaman, Chemosphere 291, 132807 (2021). https://doi.org/10.1016/j.chemosphere.2021.132807

    Article  CAS  PubMed  Google Scholar 

  21. M. Mehmandoust, N. Erk, O. Karaman, F. Karimi, M. Bijad, C. Karaman, Food Chem. Toxicol. 158, 112698 (2021). https://doi.org/10.1016/j.fct.2021.112698

    Article  CAS  PubMed  Google Scholar 

  22. H. Karimi-Maleh, F. Karimi, L. Fu, A.L. Sanati, M. Alizadeh, C. Karaman, Y. Orooji, J. Hazard. Mater. 423, 127058 (2022). https://doi.org/10.1016/j.jhazmat.2021.127058

    Article  CAS  PubMed  Google Scholar 

  23. H. Karimi-Maleh, A. Khataee, F. Karimi, M. Baghayeri, L. Fu, J. Rouhi, C. Karaman, O. Karaman, R. Boukherroub, Chemosphere 291, 132928 (2021). https://doi.org/10.1016/j.chemosphere.2021.132928

    Article  CAS  PubMed  Google Scholar 

  24. T. Zabihpour, S. Shahidi, H. Karimi–Maleh, A. Ghorbani–HasanSaraei, J. Food Meas. Charact. 14, 1039–1045 (2020). https://doi.org/10.1007/s11694-019-00353-8

    Article  Google Scholar 

  25. N.H. Khand, I.M. Palabiyik, J.A. Buledi, S. Ameen, A.F. Memon, T. Ghumro, A.R. Solangi, J. Nanostruct. Chem. 11, 455–468 (2021). https://doi.org/10.1007/s40097-020-00380-8

    Article  CAS  Google Scholar 

  26. M. Alizadeh, M. Mehmandoust, O. Nodrat, S. Salmanpour, N. Erk, J. Food Meas. Charact. 15, 5622–5629 (2021). https://doi.org/10.1007/s11694-021-01128-w

    Article  Google Scholar 

  27. A. Valadez–González, R. Rosales–Ibáñez, A. Rodríguez–Navarrete, T.E. Villamar–Duque, J. Cano–Brown, H.J. Carrillo–Escalante, Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03127-1 (Ortiz–Fernández, F. Hernández–Sánchez)

    Article  Google Scholar 

  28. K. Enomoto, Y. Takahashi, AIP Conf. Proc. 1914, 1–5 (2017). https://doi.org/10.1063/1.5016702

    Article  CAS  Google Scholar 

  29. Y. Han, R. Li, C. Brückner, T. Vadas, Carbon Res. 4(3), 40 (2018). https://doi.org/10.3390/c4030040

    Article  CAS  Google Scholar 

  30. C.T. Fakude, O.A. Arotiba, F. Arduini, N. Mabuba, Electroanalysis 32, 1–10 (2020). https://doi.org/10.1002/elan.202060070

    Article  CAS  Google Scholar 

  31. T.R. Tsekeli, T.I. Sebokolodi, D.S. Sipuka, F.O.G. Olorundare, S.P. Akanji, D. Nkosi, O.A. Arotiba, J. Electroanal. Chem. 901, 115783 (2021). https://doi.org/10.1016/j.jelechem.2021.115783

    Article  CAS  Google Scholar 

  32. S. Ramki, R. Sukanya, S.M. Chen, M. Sakthivel, Y.T. Ye, J. Hazard. Mater. 368, 760–770 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.110

    Article  CAS  PubMed  Google Scholar 

  33. E.G. de Mejia, M.V. Ramirez-Mares, Trends Endocrinol. Metab. 25(10), 489–492 (2014). https://doi.org/10.1016/j.tem.2014.07.003

    Article  CAS  Google Scholar 

  34. R.B. Lipton, H.C. Diener, M.S. Robbins, S.Y. Garas, K. Patel, J. Headache Pain 18, 107 (2017). https://doi.org/10.1186/s10194-017-0806-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L.A. Furtado, M.C.O. Gonçalves, C.V.M. Inocˆencio, E.M. Pinto, D.L. Martins, F.S. Semaan, J. Anal. Methods Chem. (2019). https://doi.org/10.1155/2019/8596484

    Article  PubMed  PubMed Central  Google Scholar 

  36. A. Trani, R. Petrucci, G. Marrosu, D. Zane, A. Curulli, J. Electroanal. Chem. 788, 99–106 (2017). https://doi.org/10.1016/j.jelechem.2017.01.049

    Article  CAS  Google Scholar 

  37. J.J. Arroyo-Gómez, D. Villarroel-Rocha, K.C. de Freitas-Araújo, C.A. Martínez-Huitle, K. Sapag, J. Electroanal. Chem. 822, 171–176 (2018). https://doi.org/10.1016/j.jelechem.2018.05.028

    Article  CAS  Google Scholar 

  38. L. Tavagnacco, O. Engström, U. Schnupf, M. Saboungi, M. Himmel, G. Widmalm, A. Cesàro, J. Brady, J. Phys. Chem. B 116(38), 11701–11711 (2012). https://doi.org/10.1021/jp303910u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the financial supports from the National Research Foundation, South Africa (CPRR Grant No. 118546) and the Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omotayo A. Arotiba.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebokolodi, T.I., Sipuka, D.S., Tsekeli, T.R. et al. An electrochemical sensor for caffeine at a carbon nanofiber modified glassy carbon electrode. Food Measure 16, 2536–2544 (2022). https://doi.org/10.1007/s11694-022-01365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01365-7

Keywords

Navigation