Skip to main content

Advertisement

Log in

Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus spp.) grain

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study was to optimize the germination condition for amaranth grains (VL-44) to maximize their nutritional value. The results showed that the optimized germinated amaranth flour exhibited higher protein, antioxidants, dietary fiber and lesser content of phytic acid and tannins as compared to raw amaranth flour. The effect of independent variables (germination temperature and germination time) on responses (protein, total dietary fiber (TDF), antioxidant activity (AOA), phytic acid and tannins), were analysed by central composite rotatable design (CCRD) analysis using Response Surface Methodology (RSM) technique, a well-defined statistical tool. Statistical analysis revealed that germination time and germination temperature significantly (p < 0.05) influenced all the responses. An increase in germination time and temperature resulted in a significant increase in protein, AOA, and TDF and reduction in phytic acid and tannins. The quantitative analysis of amino acids of raw and optimized germinated amaranth flour by HPLC revealed germination of amaranth flour enhanced all essential amino acids except methionine, tryptophan and valine. The GC–MS data showed that germination enhanced oleic acid and linoleic acid from 1.84 to 1.99% and 1.94 to 2.30% respectively, while decreased the palmitic acid from 1.06 to 1.00%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAO, IFAD and WFP. The state of food insecurity in the world 2014. Strengthening the enabling environment for food security and nutrition (FAO, Rome, 2014)

    Google Scholar 

  2. G. Usmani, N. Ahmad, J. Perioper Crit Intensive Care Nurs 3, 1 (2017)

    Article  Google Scholar 

  3. E.N. Omami, P.S. Hammes, P.J. Robbertse, New Zeal J. Crop Hort. 34, 11–22 (2006)

    Article  Google Scholar 

  4. S. Suma et al., Allelopath. J. 10, 1–11 (2002)

    Google Scholar 

  5. A.L. Bhatia, Growing colorful and nutritious Amaranths. Indian J. Nat. Prod. Resour. 4, 40–43 (2005)

    Google Scholar 

  6. S.G. Mlakar, Agricultura 6, 43–53 (2009)

    Google Scholar 

  7. J. Drzewiecki, Euphytica 119, 279–287 (2001)

    Article  Google Scholar 

  8. M.M. Morad, H.K. Leung, D.L. Hsu, P.L. Finney, Lentil, and faba bean flours and starches. Cereal Chem. 57(6), 390–396 (1980)

    CAS  Google Scholar 

  9. L. Alvarez-Jubete, E.K. Arendt, E. Gallagher, Trends Food Sci Technol. 21, 106–113 (2010)

    Article  CAS  Google Scholar 

  10. J.X. Perales-Sánchez, C. Reyes-Moreno, M.A. Gómez-Favela, J. Milán-Carrillo, E.O. Cuevas- Rodríguez, A. Valdez-Ortiz, R. Gutiérrez-Dorado, Plant Foods Hum. Nutr. 69, 196–202 (2014)

    Article  PubMed  CAS  Google Scholar 

  11. O. Paredes-Lopez, R. Mora-Escobedo, Germination of amaranth seeds: effects on nutrient composition and color. J. Food Sci. 54(3), 761–762 (1989)

    Article  CAS  Google Scholar 

  12. AOAC, Official methods of analysis, 15th edn. (Association of Official Analytical Chemists, Washington, 1995)

    Google Scholar 

  13. Bureau of Indian Standards, IS 11062: Method for estimation of total dietary fibre in food stuffs. (1984)

  14. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT 28, 25–30 (1995)

    Article  CAS  Google Scholar 

  15. H.P. Makkar, M. Blümmel, N.K. Borowy, K. Becker, J. Sci. Food Agric. 61, 161–165 (1993)

    Article  CAS  Google Scholar 

  16. Food and Agriculture Organization of the United Nations (FADA/SIDA). 14–20, 212, (1983).

  17. K.S. Liu, E.A. Brown, F.T. Orthoefer, J. Agric. Food Chem. 43, 381–383 (1995)

    Article  CAS  Google Scholar 

  18. K.S. Liu, F.T. Orthoefer, E.A. Brown, J. Am. Oil Chem. Soc. 72, 189–192 (1995)

    Article  CAS  Google Scholar 

  19. J.A. White, R.J. Hart, J.C. Fry, J. Autom. Chem. 8, 170–177 (1986)

    Article  CAS  Google Scholar 

  20. S.R. Hagen, B. Frost, J. Augustin, J. Assoc. off. Anal. Chem. 72, 912–916 (1989)

    CAS  PubMed  Google Scholar 

  21. S. Gorinstein, O.J.M. Vargas, N.O. Jaramillo, I.A. Salas, A.L.M. Ayala, P. Arancibia-Avila, F. Toledo, E. Katrich, S. Trakhtenberg, Eur. Food Res. Technol. 225, 321–328 (2007)

    Article  CAS  Google Scholar 

  22. P. Pasko, H. Barton, P. Zagrodzki, S. Gorinstein, M. Folta, Z. Zachwieja, Food Chem. 115, 994–998 (2009)

    Article  CAS  Google Scholar 

  23. N. Fayyaz, M. Mohebbi, E. Milani, Acta Medica Mediterr. 34, 597–604 (2018)

    Google Scholar 

  24. L.M. Marero, E.M. Payumo, E.C. Librado, W. Lainez, M.D. Gopez, S. Homma, J. Food Sci. 53, 1391–1395 (1989)

    Article  Google Scholar 

  25. M.A. Martin-Cabrejas, N. Ariza, R. Esteban, J. Agr, Food Chem. 51, 1254–1259 (2003)

    Article  CAS  Google Scholar 

  26. S. Sharma, D.C. Saxena, C.S. Riar, Food Biosci. 13, 60–68 (2016)

    Article  CAS  Google Scholar 

  27. O. S., Ijarotimi, O. O. Keshinro (2012) Acta Scientiarum Polonorum Technologia Alimentaria, 11: 151–165.

  28. S. Sharma, D.C. Saxena, C.S. Riar, Cogent Food Agric. 1(1), 10728 (2015)

    Google Scholar 

  29. J.K. Chavan, S.S. Kadam, L.R. Beuchat, Crit. Rev. Food Sci. Nutr. 28, 401–437 (1989)

    Article  CAS  PubMed  Google Scholar 

  30. K. Saharan, N. Khetarpaul, S. Bishnoi, Innov. Food Sci. Emerg. 2, 323–325 (2001)

    Article  CAS  Google Scholar 

  31. I. Lestienne, C. Icard-Verniére, C. Mouquet, C. Picq, S. Tréche, Food Chem. 89, 421–425 (2005)

    Article  CAS  Google Scholar 

  32. S. Hassan, M. Imran, N. Ahmad, M.K. Khan, Lipids Health Dis. 16(1), 125 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. M.H. Dicko, H. Gruppen, O.C. Zouzouho, A.S. Traore, W.J.H. van Berkel, A.G.J. Voragen, J. Sci. Food Agric. 86, 953 (2006)

    Article  CAS  Google Scholar 

  34. A.J. Parr, G.P. Bolwell, J. Sci. Food Agric. 80, 985 (2000)

    Article  CAS  Google Scholar 

  35. J. Rosler, F. Krekel, N. Amrhein, J. Schmid, Plant Physiol. 113, 175 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F. Tomas-Barberan, J.C. Espın, J. Sci. Food Agric. 81, 853 (2001)

    Article  CAS  Google Scholar 

  37. B.C. Nwanguma, M.O. Eze, J. Sci. Food Agric. 70, 162 (1996)

    Article  CAS  Google Scholar 

  38. C.W. Glennie, J. Agric. Food Chem. 31, 1295 (1983)

    Article  CAS  Google Scholar 

  39. L. Alvarez-Jubete, E.K. Arendt, E. Gallagher, Int. J. Food Sci. Nutr. 60(4), 240–257 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. M.H. Kim, S.I. Ahn, C.M. Lim, J.W. Jhoo, G.Y. Kim, Korean Food Sci. Anim. Resour. 36, 508 (2016)

    Article  Google Scholar 

  41. A. Moongngarm, N. Saetung, Food Chem. 122, 782–788 (2010)

    Article  CAS  Google Scholar 

  42. J.R. Lupton, J.A. Brooks, N.F. Butte, B. Caballero, J.P. Flatt, S.K. Fried, Dietary referenceintakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, vol. 5, (National Academy Press, Washington, D.C., 2005), pp. 589–768

    Google Scholar 

  43. V.R. Young, S. Borgonha, J. Nutr. 130, 1841–1849 (2000)

    Article  Google Scholar 

  44. W.H.O. (2007). World Health Organization technical report series. Series no. 935. Geneva, Switzerland.

  45. R.R. Pillai, A.V. Kurpad, Amino acid requirements in children and the elderly population. Br. J. Nutr. 108(S2), S44–S49 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University Grants Commission for providing Rajiv Gandhi National Fellowship to carry out this study.

Funding

This study was supported by University Grants Commission, RGNF-HAR-SC-13060, Arti Chauhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Kumari, N., Saxena, D.C. et al. Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus spp.) grain. Food Measure 16, 1777–1786 (2022). https://doi.org/10.1007/s11694-022-01292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01292-7

Keywords

Navigation