Skip to main content
Log in

Effects of deep-fat frying and active pretreatments of tomato pectin and paste on physical, textural and nutritional properties of fried frankfurter-type chicken sausage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Effect of active pretreatment of tomato pectin and paste on physicochemical, textural, microstructure and organoleptic attributes of chicken sausage during deep-fat frying was investigated in this study. Compared with the control sample, pectin and tomato paste (TP) treatments decreased the oil uptake and moisture loss of deep-fried chicken sausage by 13.28% and 10.16, respectively. Adding pectin along with tomato paste to chicken sausage formulation decreased chewiness and springiness forces to 21.36 N and 0.70, respectively. Using tomato paste and pectin increased the cohesiveness (9.1%) and softness (19.11%) of the tissue. The deep-fried sausage samples were analyzed for PV (peroxide value), TBARS (thiobarbituric acid reactive substances) and sensory attributes. The most reduction in lipid oxidation (51.45% for PV and 36.51% for TBA) was observed when sausage samples were enriched with 1% pectin and 2% tomato paste, while the control samples had the highest values of TBARS and PV after the deep-fat frying process. Based on the results of the sensory attribute, significant differences in texture, color, smell, and taste were observed among the treatments (p < 0.05). However, based on overall acceptability, enriched chicken sausage with 1% pectin and 2% TP had the highest scores. By considering the results of nutritional, structural and sensory evaluations, using of active pretreatment of pectin and tomato paste reduced oil uptake and lipid oxidation, resulting in a healthier fast-food product after the deep-fat frying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Duncan’s multiple comparison test is used as a common method to compare the average effects of pretreatments used in food processes. In this study, the authors investigated the changes of texture, oil uptake and lipid oxidation, as well as the sensory properties of chicken sausages during the frying process using SPSS VER 22 software.

References

  1. A.A. Asmaa, A.Y. TajulInt, Food Res. J. 24, 1308–1313 (2017)

    CAS  Google Scholar 

  2. M. Jouki, M. Rabbani, M.J. Shakouri, Food Sci. Technol. 40, 521–527 (2020). https://doi.org/10.1590/fst.26419

    Article  Google Scholar 

  3. M. Jouki, N. Khazaei, J. Food Sci. Technol. (2021). https://doi.org/10.1007/s13197-021-05114-4

    Article  Google Scholar 

  4. N. Khazaei, M. Esmaiili, Z. Emam-Djomeh, Carbohydr. Polym. 137, 249–254 (2016). https://doi.org/10.1016/j.carbpol.2015.10.084

    Article  CAS  PubMed  Google Scholar 

  5. K.R. Parimala, M.L. Sudha, Food Hydrocolloid. 27, 191–200 (2012). https://doi.org/10.1016/j.foodhyd.2011.07.005

    Article  CAS  Google Scholar 

  6. S. Jafarzadeh, A. Salehabadi, A. Mohammadi Nafchi et al., Trends Food Sci. Technol. 116, 218–231 (2021). https://doi.org/10.1016/j.tifs.2021.07.021

    Article  CAS  Google Scholar 

  7. S. Chang, A. Mohammadi Nafchi, H. Baghaie, Food Sci. Nutr. 9, 3732–3739 (2021). https://doi.org/10.1002/fsn3.2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Jafarzadeh, A. Mohammadi Nafchi, A. Salehabadi et al., Adv. Colloid Interface Sci. 291, 102405 (2021). https://doi.org/10.1016/j.cis.2021.102405

    Article  CAS  PubMed  Google Scholar 

  9. M. Jouki, N. Khazaei, S. Rashidi-Alavijeh et al., Food Hydrocolloid. 120, 106895 (2021). https://doi.org/10.1016/j.foodhyd.2021.106895

    Article  CAS  Google Scholar 

  10. M. Jouki, N. Khazaei, F. Rezaei et al., Int. Dairy J., 122, 105133 (2021). https://doi.org/10.1016/j.idairyj.2021.105133

    Article  Google Scholar 

  11. M. Jouki, N. Khazaei, Food Sci. Biotechnol. 22, 687–690 (2013)

    Article  CAS  Google Scholar 

  12. M. Haji Ghafarloo, M. Jouki, M. Tabari, J. Food Sci. Technol. 57, 1158–1166 (2020). https://doi.org/10.1007/s13197-019-04151-4

    Article  CAS  PubMed  Google Scholar 

  13. D.N. Kim, J. Lima, I.Y. Bae et al., J. Food Eng. 102, 317–320 (2011). https://doi.org/10.1016/j.jfoodeng.2010.09.005

    Article  CAS  Google Scholar 

  14. X. Hua, K. Wang, R. Yang et al., LWT Food Sci. Technol. 62, 1220–1225 (2015). https://doi.org/10.1016/j.lwt.2015.02.010

    Article  CAS  Google Scholar 

  15. A.D. Garmakhany, H.O. Mirzaei, Y. Maghsudlo et al., J. Food Sci. Technol. 51, 1334–1341 (2014). https://doi.org/10.1007/s13197-012-0660-9

    Article  CAS  Google Scholar 

  16. A. Milani, M. Jouki, M. Rabbani, Food Sci. Nutr. 8, 3768–3776 (2020). https://doi.org/10.1002/fsn3.1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Haak, I. Sioen, K. Raes et al., Food Chem. 102, 857–864 (2007). https://doi.org/10.1016/j.foodchem.2006.06.054

    Article  CAS  Google Scholar 

  18. R. Domínguez, P. Gullón, M. Pateiro et al., Antioxidants 9, 1–22 (2020). https://doi.org/10.3390/antiox9010073

    Article  CAS  Google Scholar 

  19. N. Gokoglu, P. Yerlikaya, O. Kadir Topuz, J. Food Process. Preserv. 36, 191–197 (2012). https://doi.org/10.1111/j.1745-4549.2011.00576.x

    Article  CAS  Google Scholar 

  20. M.S. Deda, J.G. Bloukas, G.A. Fista, Meat Sci. 76, 501–508 (2007). https://doi.org/10.1016/j.meatsci.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  21. K. Candogan, Eur. Food Res. Technol. 215, 305–309 (2002). https://doi.org/10.1007/s00217-002-0567-1

    Article  CAS  Google Scholar 

  22. M.M. Alancay, M.O. Lobo, C.M. Quinzio et al., J. Food Meas. Charact. 11, 2119–2130 (2017). https://doi.org/10.1007/s11694-017-9596-0

    Article  Google Scholar 

  23. K. Jo, J. Lee, S. Jung, Korean J. Food Sci. Anim. Res. 34, 768–779 (2018). https://doi.org/10.5851/kosfa.2018.e15

    Article  Google Scholar 

  24. B.K. Famenin, H. Hosseini, F. Zayeri et al., J. Food Process. Preserv. 43, e13938 (2019). https://doi.org/10.1111/jfpp.13938

    Article  CAS  Google Scholar 

  25. S.M.T. Gharibzahedi, S.M. Mousavi, M. Jouki et al., Int. J. Food Eng. (2012). https://doi.org/10.1515/1556-3758.2703

    Article  Google Scholar 

  26. M. Jouki, Radiat. Phys. Chem. 85, 243–245 (2013). https://doi.org/10.1016/j.radphyschem.2012.12.009

    Article  CAS  Google Scholar 

  27. M. Jouki, N. Khazaei, J. Food Process. Technol. 3, 184 (2012)

    Article  Google Scholar 

  28. M. Jouki, F.T. Yazdi, S.A. Mortazavi et al., Int. J. Food Mic. 174, 88–97 (2014). https://doi.org/10.1016/j.ijfoodmicro.2014.01.001

    Article  CAS  Google Scholar 

  29. M. Jouki, N. Khazaei, Int. J. Pharma Bio Sci. 3, 164–170 (2012)

    CAS  Google Scholar 

  30. M. Jouki, N. Khazaei, J. Food Process. Technol. 3, 189 (2012)

    Article  Google Scholar 

  31. M. Jouki, S.A. Mortazavi, F.T. Yazdi et al., Food Sci. Hum. Well. 3, 65–72 (2014). https://doi.org/10.1016/j.fshw.2014.05.002

    Article  Google Scholar 

  32. F. Tayyari, J. Khazaei, P. Rajaei et al., Carpathian. J. Food Sci. Technol. 9, 16–26 (2017)

    CAS  Google Scholar 

  33. F. Alipoorfard, M. Jouki, H. Tavakolipour, J. Food Sci. Technol. 57, 3165–3175 (2020)

    Article  Google Scholar 

  34. M. Jouki, F.T. Yazdi, Anim. Sci. Pap. Rep. 32, 161–171 (2014)

    Google Scholar 

  35. M. Jouki, N. Khazaei, A. Jouki, J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-01049-8

    Article  Google Scholar 

  36. D.T. Utama, H.S. Jeong, J. Kim et al., Poult. Sci. 98, 3059–3066 (2019). https://doi.org/10.3382/ps/pez105

    Article  CAS  PubMed  Google Scholar 

  37. Y.S. Choi, H.W. Kim, K.E. Hwang et al., Meat Sci. 96, 892–900 (2014). https://doi.org/10.1016/j.meatsci.2013.08.033

    Article  CAS  PubMed  Google Scholar 

  38. F. Alaei, M. Hojjatoleslamy, S.M.H. Dehkordi, Food Sci. Nutr. 6, 512–519 (2018). https://doi.org/10.1002/fsn3.585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Jafari, M. Jouki, M. Soltani, J. Food Meas. Charact. 15, 3800–3810 (2021). https://doi.org/10.1007/s11694-021-00976-w

    Article  Google Scholar 

  40. M. Han, H.C. Bertram, Meat Sci. 133, 159–165 (2017). https://doi.org/10.1016/j.meatsci.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  41. A.K. Verma, B.D. Sharma, R. Banerjee, LWT Food Sci. Technol. 43, 715–719 (2010). https://doi.org/10.1016/j.lwt.2009.12.006

    Article  CAS  Google Scholar 

  42. Y. Kumar, D.N. Yadav, T. Ahmad et al., Comp. Rev. Food Sci. Food Safety 14, 796–812 (2015). https://doi.org/10.1111/1541-4337.12156

    Article  CAS  Google Scholar 

  43. R.A. Sarteshnizi, H. Hosseini, K. Khosroshahi et al., Food Technol. Biotechnol. 55, 475–482 (2017). https://doi.org/10.17113/ftb.55.04.17.5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R. Khaksar, M. Moslemy, H. Hosseini et al., Iranian J. Vet. Res. 11, 154–163 (2010). https://doi.org/10.22099/IJVR.2010.159

    Article  Google Scholar 

  45. V.V. Smirnov, V.V. Golovchenko, F.V. Vityazev et al., J. Chem. 2, 1–10 (2017). https://doi.org/10.1155/2017/5898594

    Article  CAS  Google Scholar 

  46. E. Elbadrawy, A. Sello, Arab. J. Chem. 9, S1010–S1018 (2016). https://doi.org/10.1016/j.arabjc.2011.11.011

    Article  CAS  Google Scholar 

  47. M. Luisa García, M.M. Calvo, M. Dolores Selgas, Meat Sci. 83, 45–49 (2009). https://doi.org/10.1016/j.meatsci.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  48. J.E. Hayes, I. Canonico, P. Allen, Meat Sci. 95, 755–762 (2013). https://doi.org/10.1016/j.meatsci.2013.04.049

    Article  CAS  PubMed  Google Scholar 

  49. A.V. Perumalla, N.S. Hettiarachchy, Food Res. Int. 44, 827–839 (2011). https://doi.org/10.1016/j.foodres.2011.01.022

    Article  CAS  Google Scholar 

  50. G. Giovanelli, A. Paradiso, J. Agric. Food Chem. 50(25), 7277–7281 (2002). https://doi.org/10.1021/jf025595r

    Article  CAS  PubMed  Google Scholar 

  51. S. Barbut, Ital. J. Food Sci. 30, 801–808 (2018). https://doi.org/10.14674/IJFS-1084

    Article  CAS  Google Scholar 

  52. J. Pereira, H. Hu, L. Xing, W. Zhang, G. Zhou, Foods 9, 9 (2020). https://doi.org/10.3390/foods9010009

    Article  CAS  Google Scholar 

  53. M.A. Elgadir, M.J.H. Akanda, S. Ferdosh, A. Mehrnoush, A.A. Karim, T. Noda, M.Z.I. Sarker, Molecules 17, 584–597 (2012). https://doi.org/10.3390/molecules17010584

    Article  CAS  PubMed Central  Google Scholar 

  54. M. Wu, J. Wang, J. Hu, Z. Li, R. Liu, Y. Liu, Y. Cao, Q. Ge, H. Yu, J. Sci. Food Agric. 100, 258–267 (2019). https://doi.org/10.1002/jsfa.10033

    Article  CAS  PubMed  Google Scholar 

  55. A.J. Gravelle, S. Barbut, A.G. Marangoni, Sci. Rep. 7, 11544 (2017). https://doi.org/10.1038/s41598-017-11711-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. X.X. Wang, Y.S. Li, Y. Zhou, F. Ma, P.J. Li, C.G. Chen, Food Hydrocolloid. 96, 681–687 (2019). https://doi.org/10.1016/j.foodhyd.2019.06.013

    Article  CAS  Google Scholar 

  57. A.B. Alves, N. Bragagnolo, M.G. Silva et al., Process 90, 499–505 (2012). https://doi.org/10.1016/j.fbp.2011.10.004

    Article  CAS  Google Scholar 

  58. N. Skiepko, I. Chwastowska-Siwiecka, J. Kondratowicz et al., Brazilian. J. Poult. Sci. 18, 319–330 (2016). https://doi.org/10.1590/1806-9061-2015-0010

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge for the support awarded by Islamic Azad University (North Tehran Branch, Iran).

Funding

This work was funded by Grant (No. 32439) from the North Tehran Branch, Islamic Azad University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MJ: conceptualization, data curation, project administration, formal analysis, funding acquisition, investigation. MJS: validation, review and editing. NK: methodology, validation, software, writing—original draft.

Corresponding author

Correspondence to Mohammad Jouki.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Ethical approval

This study does not involve any animal testing. We declare no ethical issue related with this article.

Informed consent

Written informed consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouki, M., Shakouri, M.J. & Khazaei, N. Effects of deep-fat frying and active pretreatments of tomato pectin and paste on physical, textural and nutritional properties of fried frankfurter-type chicken sausage. Food Measure 15, 5485–5494 (2021). https://doi.org/10.1007/s11694-021-01116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01116-0

Keywords

Navigation