Skip to main content

Advertisement

Log in

Effect of hydrogen-rich water and slightly acidic electrolyzed water treatments on storage and preservation of fresh-cut kiwifruit

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Kiwifruit has a high nutritional value. However, fresh-cut kiwifruit is prone to tissue softening, leading to a decrease in fruit quality and shortening of shelf life. This study investigated the effects of hydrogen-rich water (HRW) and slightly acidic electrolyzed water (SAEW) on preserving fresh-cut kiwifruit. The weight loss, soluble solid content (SSC), titratable acidity (TA), ascorbic acid (ASA) content, chlorophyll content, color, firmness, total phenolic content, total flavonoid content, total colony numbers, malondialdehyde (MDA) content, and electrolyte leakage of treated fresh-cut kiwifruit were analyzed for 8 days at 4 ± 1 °C. The HRW or SAEW treatment delayed the decrease in TA, chlorophyll content, ASA content, total phenolic content, and total flavonoid content; reduced the total colony numbers and weight loss; inhibited the increase in SSC, MDA content, and electrolyte leakage; and maintained the green color and firmness compared with the control to varying degrees. Furthermore, the HRW combined with SAEW treatment was better than HRW or SAEW alone. This study indicated that the HRW combined with SAEW treatment might be a promising method to maintain the high storage quality of fresh-cut kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and materials complied with field standards.

References

  1. D.P. Richardson, J. Ansell, L.N. Drummond, Eur. J. Nutr. (2018). https://doi.org/10.1007/s00394-018-1627-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. X. Meng, M. Zhang, B. Adhikari, Food Bioprocess Technol. (2013). https://doi.org/10.1007/s11947-013-1081-0

    Article  Google Scholar 

  3. C.Y. Wang, J.G. Buta, Postharvest Biol. Technol. (2003). https://doi.org/10.1016/s0925-5214(02)00125-4

    Article  Google Scholar 

  4. M.D.C. Antunes, D.A.C. Rodrigues, A.M. Cavaco, M.G. Miguel, A. Hort, Evaluation of quality changes during shelf-life in minimally processed kiwifruit. Acta Hortic. (2011). https://doi.org/10.17660/ActaHortic.2011.913.75

    Article  Google Scholar 

  5. S. Beirão-da-Costa, A. Steiner, L. Correia, E. Leitão, J. Empis, M. Moldão-Martins, Eur. Food Res. Technol. (2007). https://doi.org/10.1007/s00217-007-0573-4

    Article  Google Scholar 

  6. W.L. Li, X.H. Li, Y.J. Sun, Y. Tang, Y.Q. Jiang, M. Zhang, Adv. Res. Mater. (2011). https://doi.org/10.4028/scientific.net/AMR.233-235.1985

    Article  Google Scholar 

  7. P. Rocculi, S. Romani, M.D. Rosa, Postharvest Biol. Technol. (2005). https://doi.org/10.1016/j.postharvbio.2004.09.003

    Article  Google Scholar 

  8. S. Roller, P. Seedhar, Lett. Appl. Microbiol. (2002). https://doi.org/10.1046/j.1472-765X.2002.01209.x

    Article  PubMed  Google Scholar 

  9. I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K. Katsura, Y. Katayama, S. Asoh, S. Ohta, Nat. Med. (2007). https://doi.org/10.1038/nm1577

    Article  PubMed  Google Scholar 

  10. Y. Hong, S. Chen, J.M. ZHANG, J. Int. Med. Res. (2010). https://doi.org/10.1177/147323001003800602

    Article  PubMed  Google Scholar 

  11. M. Chen, W. Cui, K. Zhu, Y. Xie, C. Zhang, W. Shen, J. Hazard Mater. (2014). https://doi.org/10.1016/j.jhazmat.2013.12.029

    Article  PubMed  Google Scholar 

  12. Q. Guan, X.W. Ding, R. Jiang, P.L. Ouyang, J. Gui, L. Feng, L. Yang, L.H. Song, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.125095

    Article  PubMed  Google Scholar 

  13. S.P. Singh, Z. Singh, Int. J. Food Sci. Technol. (2013). https://doi.org/10.1111/j.1365-2621.2012.03196.x

    Article  Google Scholar 

  14. Y. Xie, Y. Mao, D. Lai, W. Zhang, W. Shen, PLoS ONE (2012). https://doi.org/10.1371/journal.pone.0049800

    Article  PubMed  PubMed Central  Google Scholar 

  15. T. Ding, Z. Ge, J. Shi, Y.T. Xu, C.L. Jones, D.H. Liu, LWT—Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2014.09.012

    Article  Google Scholar 

  16. X.-T. Xuan, T. Ding, J. Li, J.H. Ahn, Y. Zhao, S.G. Chen, X.Q. Ye, D.H. Liu, Food Control (2017). https://doi.org/10.1016/j.foodcont.2016.06.018

    Article  Google Scholar 

  17. S. Koide, J.-I. Takeda, J. Shi, H. Shono, G.G. Atungulu, Food Control (2009). https://doi.org/10.1016/j.foodcont.2008.05.019

    Article  Google Scholar 

  18. C. Zhang, Z. Lu, Y. Li, Y. Shang, G. Zhang, W. Cao, Food Control (2011). https://doi.org/10.1016/j.foodcont.2010.11.018

    Article  Google Scholar 

  19. C. Zhang, Y. Zhang, Z. Zhao, W. Liu, Y. Chen, G. Yang, X. Xia, Y. Cao, Food Control (2019). https://doi.org/10.1016/j.foodcont.2019.04.029

    Article  PubMed  Google Scholar 

  20. W. Yan, Y. Zhang, R. Yang, W. Zhao, Food Control (2020). https://doi.org/10.1016/j.foodcont.2019.106820

    Article  Google Scholar 

  21. X. Liao, Q. Xiang, P.J. Cullen, Y. Su, S. Chen, X. Ye, D. Liu, T. Ding, LWT—Food Sci. Technol. (2020). https://doi.org/10.1016/j.lwt.2019.108649

    Article  Google Scholar 

  22. W. Zheng, W. Cao, B. Li, X. Hao, L. Ni, C. Wang, Int. J. Food Eng. (2012). https://doi.org/10.1515/1556-3758.2827

    Article  Google Scholar 

  23. F. Xu, S. Liu, Y. Liu, J. Xu, T. Liu, S. Dong, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.03.024

    Article  PubMed  Google Scholar 

  24. S. Li, L. Zhang, M. Liu, X. Wang, G. Zhao, W. Zong, Postharvest Biol. Technol. (2017). https://doi.org/10.1016/j.postharvbio.2017.08.014

    Article  Google Scholar 

  25. G.H.A. Teixeira, J.F. Durigan, A.S. Ferraudo, R.E. Alves, T.J. O’Hare, Postharvest Biol. Technol. (2012). https://doi.org/10.1016/j.postharvbio.2011.09.005

    Article  Google Scholar 

  26. R.K. Toor, G.P. Savage, Food Res. Int. (2005). https://doi.org/10.1016/j.foodres.2004.10.016

    Article  Google Scholar 

  27. Z. Liu, X. Wang, Postharvest Biol. Technol. (2012). https://doi.org/10.1016/j.postharvbio.2012.02.008

    Article  Google Scholar 

  28. S. Zhang, Y. Yu, C. Xiao, X. Wang, Y. Lei, LWT—Food Sci. Technol. (2014). https://doi.org/10.1016/j.lwt.2014.02.046

    Article  Google Scholar 

  29. H.J. Song, D.W. Choi, K.B. Song, Hortic. Environ. Biotechnol. (2011). https://doi.org/10.1007/s13580-011-0043-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. A. Mohammadi, M. Hashemi, S.M. Hosseini, Postharvest Biol. Technol. (2015). https://doi.org/10.1016/j.postharvbio.2015.08.019

    Article  Google Scholar 

  31. H. Hu, P. Li, Y. Wang, R. Gu, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2014.01.067

    Article  PubMed  Google Scholar 

  32. H.H. Zhi, Q.Q. Liu, Y. Dong, M.P. Liu, W. Zong, J. Hortic. Sci. Biotechnol. (2017). https://doi.org/10.1080/14620316.2017.1309994

    Article  Google Scholar 

  33. S. Beirão-da-Costa, A. Steiner, L. Correia, J. Empis, M. Moldão-Martins, J. Food Eng. (2006). https://doi.org/10.1016/j.jfoodeng.2005.06.012

    Article  Google Scholar 

  34. M. Duran, M.S. Aday, N.N.D. Zorba, R. Temizkan, M.B. Büyükcan, C. Caner, Food Bioprod. Process (2016). https://doi.org/10.1016/j.fbp.2016.01.007

    Article  Google Scholar 

  35. I. Nishiyama, T. Fukuda, T. Oota, J. Agric. Food Chem. (2005). https://doi.org/10.1021/jf050785y

    Article  PubMed  Google Scholar 

  36. H. Zhuang, D.F. Hildebrand, M. Margaret Barth, Senescence of broccoli buds is related to changes in lipid peroxidation. J. Agric. Food Chem. (1995). https://doi.org/10.1021/jf00058a006

    Article  Google Scholar 

  37. H. Chen, J. Zhang, H. Hao, Z. Feng, M. Chen, H. Wang, M. Ye, AMB Express (2017). https://doi.org/10.1186/s13568-017-0496-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. C.C. Wong, H.B. Li, K.W. Cheng, F. Chen, Food Chem. (2006). https://doi.org/10.1016/j.foodchem.2005.05.049

    Article  Google Scholar 

  39. A. Issa-Zacharia, Y. Kamitani, N. Miwa, H. Muhimbula, K. Iwasaki, Food Control (2011). https://doi.org/10.1016/j.foodcont.2010.10.011

    Article  Google Scholar 

  40. T.P. Cushnie, A.J. Lamb, Int. J. Antimicrob. Agents (2011). https://doi.org/10.1016/j.ijantimicag.2011.02.014

    Article  PubMed  Google Scholar 

  41. X. Li, H. Yue, S. Xu, J. Tian, Y. Zhao, J. Xu, LWT—Food Sci. Technol. (2020). https://doi.org/10.1016/j.lwt.2020.109080

    Article  Google Scholar 

  42. N. Su, Q. Wu, Y. Liu, J. Cai, W. Shen, K. Xia, J. Cui, J. Agric, Food Chem. (2014). https://doi.org/10.1021/jf5019593

    Article  PubMed  Google Scholar 

  43. N. Rolny, L. Costa, C. Carrion, J.J. Guiamet, Plant Physiol. Biochem. (2011). https://doi.org/10.1016/j.plaphy.2011.06.010

    Article  PubMed  Google Scholar 

  44. Q. Wang, T. Ding, J. Zuo, L. Gao, L. Fan, Postharvest Biol. Technol. (2016). https://doi.org/10.1016/j.postharvbio.2015.07.008

    Article  Google Scholar 

  45. L. Rui, H. Jianxiong, L. Haijie, L. Lite, Food Control (2011). https://doi.org/10.1016/j.foodcont.2011.02.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to the National key research and development project of China ‘High-quality fruit and vegetable intelligent quality grading technology and equipment research and development’ (Sub-project 2018YFD0700303) for supporting this study financially.

Funding

This work was supported by the National key research and development project of China ‘High-quality fruit and vegetable intelligent quality grading technology and equipment research and development’. (Grant Numbers [2018YFD0700303]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiang Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Meng, X., Li, W. et al. Effect of hydrogen-rich water and slightly acidic electrolyzed water treatments on storage and preservation of fresh-cut kiwifruit. Food Measure 15, 5203–5210 (2021). https://doi.org/10.1007/s11694-021-01000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01000-x

Keywords

Navigation