Skip to main content
Log in

Combined aqueous ozone and ultrasound application inhibits microbial spoilage, reduces pesticide residues and maintains storage quality of strawberry fruits

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Inappropriate use of pesticides and unhygienic supply chains contaminate fresh fruit and vegetables with health-hazardous micro-organisms and chemical residues. Here, combined efficacy of aqueous ozone and ultrasound to disinfect and decontaminate strawberry fruits from food-borne microbial pathogen and pesticide residues was evaluated. Strawberry fruits were exposed to either ozone (flow rate ≥ 3.3 mg min−1 for 125 g strawberry L−1 water) or ultrasound (40 kHz at 100 W) for 3, 6 and 9 min. Treatment of strawberry fruits with either ozone or ultrasound for 3 min effectively reduced bacterial survival by 44-fold and 17-fold, respectively, compared to control. Then, strawberry fruits were simultaneously treated with both ozone and ultrasound for 1, 2 or 3 min and stored at 2 ± 0.5 °C and 95% relative humidity for 12 days. Ozone and ultrasound treatment for 3 min was most effective in reducing bacterial survival (98%) and residues of various pesticides (98–99%) compared to control. Strawberry fruits treated with ozone and ultrasound for 3 min exhibited delay in fungal decay by 4 days and 4% reduction in weight loss during cold storage for 12 days. Also, gradual decline in total soluble solids, titratable acidity, pH, ascorbic acid and anthocyanins in cold-stored strawberry fruits was also hindered. Ozone and ultrasound treatment for 3 min also restrained 62% higher catalase, 52% higher peroxidase, and 70% higher superoxide dismutase in strawberry tissues compared to control after 12 days in cold storage. Thus, combined treatment of ozone and ultrasound for 3 min increased marketable life of strawberry fruits for 6 more days under cold storage conditions. Overall, results revealed a positive effect of ozone and ultrasound on disinfecting and decontaminating strawberry fruits along with extending their marketable life under cold storage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.Y. Forbes-Hernandez, M. Gasparrini, S. Afrin, S. Bompadre, B. Mezzetti, J.L. Quiles, F. Giampieri, M. Battino, Crit. Rev. Food Sci. Nutr. (2016). https://doi.org/10.1080/10408398.2015.1051919

    Article  PubMed  Google Scholar 

  2. A. Basu, A. Nguyen, N.M. Betts, T.J. Lyons, Crit. Rev. Food Sci. Nutr. (2014). https://doi.org/10.1080/10408398.2011.608174

    Article  PubMed  Google Scholar 

  3. X. Zhang, Z. Zhang, L. Wang, Z. Zhang, J. Li, C. Zhao, Front. Agric. China (2011). https://doi.org/10.1007/s11703-011-1053-y

    Article  Google Scholar 

  4. B. Lozowicka, M. Jankowska, I. Hrynko, P. Kaczynski, Environ. Monit. Assess. (2016). https://doi.org/10.1007/s10661-015-4850-6

    Article  PubMed  Google Scholar 

  5. J. Hassan, R. Anwar, A.S. Khan, S. Ahmad, A.U. Malik, M. Nafees, Z. Hussain, M. Inam-ur-Raheem, Int. J. Agric. Biol. (2020) https://doi.org/https://doi.org/10.17957/IJAB/15.1463

  6. İ Kahramanoğlu, Sci. Horticult. (2019). https://doi.org/10.1016/j.scienta.2019.05.054

    Article  Google Scholar 

  7. O.B. Sogvar, M. Koushesh Saba, A. Emamifar, R. Hallaj, Innov. Food Sci. Emerg. Technol. (2016). https://doi.org/10.1016/j.ifset.2016.05.005

    Article  Google Scholar 

  8. S.K. Bose, P. Howlader, X.C. Jia, W.X. Wang, Y. Heng, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.01.060

    Article  PubMed  Google Scholar 

  9. R.W. Maraei, K.M. Elsawy, J. Radiat. Res. Appl. Sci. (2017). https://doi.org/10.1016/j.jrras.2016.12.004

    Article  Google Scholar 

  10. P. Kingwascharapong, Y. Iida, F. Tanaka, F. Tanaka, J. Fac. Agric. Kyushu Univ. 64, 301 (2019)

    Article  CAS  Google Scholar 

  11. B.K. Martinsen, K. Aaby, G. Skrede, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.126297

    Article  PubMed  Google Scholar 

  12. M. Céline, G. Valérie, G. Karine, C. Sandrine, G. Nathalie, G. Stéphane, G. Sébastien, Postharvest. Biol. Technol. (2020). https://doi.org/10.1016/j.postharvbio.2020.111119

    Article  Google Scholar 

  13. M.C. Alamar, E. Collings, K. Cools, L.A. Terry, Postharvest. Biol. Technol. (2017). https://doi.org/10.1016/j.postharvbio.2017.08.003

    Article  Google Scholar 

  14. M.A. Hussain, R. Gooneratne, Foods (2017). https://doi.org/10.3390/foods6030023

    Article  PubMed  PubMed Central  Google Scholar 

  15. M.S. Aday, C. Caner, LWT Food Sci. Technol. (2014). https://doi.org/10.1016/j.lwt.2014.01.006

    Article  Google Scholar 

  16. J.F.B.D.S. José, M.C.D. Vanetti, LWT Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.04.029

    Article  Google Scholar 

  17. Z.B. Guzel-Seydim, A.K. Greene, A.C. Seydim, LWT Food Sci. Technol. (2004). https://doi.org/10.1016/j.lwt.2003.10.014

    Article  Google Scholar 

  18. S. Shezi, L. Samukelo Magwaza, A. Mditshwa, S. Zeray Tesfay, Sci. Horticult. (2020). https://doi.org/10.1016/j.scienta.2020.109397

    Article  Google Scholar 

  19. R. Pandiselvam, R. Kaavya, Y. Jayanath, K. Veenuttranon, P. Lueprasitsakul, V. Divya, A. Kothakota, S.V. Ramesh, Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2019.12.017

    Article  Google Scholar 

  20. H. Li, Z. Xiong, D. Gui, X. Li, J. Food Process. Preserv. (2019). https://doi.org/10.1111/jfpp.14244

    Article  Google Scholar 

  21. A. Luo, J. Bai, R. Li, Y. Fang, L. Li, D. Wang, L. Zhang, J. Liang, T. Huang, L. Kou, J. Phytopathol. (2019). https://doi.org/10.1111/jph.12819

    Article  Google Scholar 

  22. J.F. García-Martín, M. Olmo, J.M. García, Postharvest. Biol. Technol. (2018). https://doi.org/10.1016/j.postharvbio.2017.11.015

    Article  Google Scholar 

  23. N. Tabakoglu, H. Karaca, LWT Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2018.02.044

    Article  Google Scholar 

  24. A. Bellincontro, C. Catelli, R. Cotarella, F. Mencarelli, Aust. J. Grape Wine Res. (2017). https://doi.org/10.1111/ajgw.12257

    Article  Google Scholar 

  25. W.K. Yeoh, A. Ali, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.07.074

    Article  PubMed  Google Scholar 

  26. A.G. Pérez, C. Sanz, J.J. Ríos, R. Olias, J.M. Olías, J. Agric. Food Chem. (1999). https://doi.org/10.1021/jf980829l

    Article  PubMed  Google Scholar 

  27. A. Nadas, M. Olmo, J. Garcia, J. Food Sci. (2003). https://doi.org/10.1111/j.1365-2621.2003.tb12332.x

    Article  Google Scholar 

  28. S.M.R. Azam, H. Ma, B. Xu, S. Devi, M.A.B. Siddique, S.L. Stanley, B. Bhandari, J. Zhu, Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.01.028

    Article  Google Scholar 

  29. E. Montalvo-González, L.M. Anaya-Esparza, J. Abraham Domínguez-Avila, G.A. González-Aguilar, in Postharvest Disinfection of Fruits and Vegetables. ed. by M.W. Siddiqui (Academic Press, London, 2018), pp. 101–119

    Chapter  Google Scholar 

  30. L. Neto, D. Millan-Sango, J.-P. Brincat, L.M. Cunha, V.P. Valdramidis, Food Control (2019). https://doi.org/10.1016/j.foodcont.2019.04.047

    Article  Google Scholar 

  31. Y. Chen, Y. Jiang, S. Yang, E. Yang, B. Yang, K.N. Prasad, J. Food Biochem. (2012). https://doi.org/10.1111/j.1745-4514.2011.00573.x

    Article  Google Scholar 

  32. E. Bal, Chil. J. Agric. Res. (2013). https://doi.org/10.4067/S0718-58392013000400016

    Article  Google Scholar 

  33. S.F. Cao, Z.C. Hu, B. Pang, Postharvest. Biol. Technol. (2010). https://doi.org/10.1016/j.postharvbio.2009.11.002

    Article  Google Scholar 

  34. S.F. Cao, Z.C. Hu, B. Pang, H.O. Wang, H.X. Xie, F. Wu, Food Control (2010). https://doi.org/10.1016/j.foodcont.2009.08.002

    Article  Google Scholar 

  35. R. Bhat, R. Stamminger, Food Sci. Technol. Int. (2015). https://doi.org/10.1177/2F1082013214536708

    Article  PubMed  Google Scholar 

  36. S.A. Baig, N.A. Akhtera, M. Ashfaq, M.R. Asi, Am. Eurasian J. Agric. Environ. Sci. 6, 513 (2009)

    CAS  Google Scholar 

  37. C. Huan, L. Jiang, X. An, M. Yu, Y. Xu, R. Ma, Z. Yu, Plant Physiol. Biochem. (2016). https://doi.org/10.1016/j.plaphy.2016.05.013

    Article  PubMed  Google Scholar 

  38. M. Amin, A.U. Malik, M.S. Khalid, R. Anwar, Acta Horticult. (2013). https://doi.org/https://doi.org/10.17660/ActaHortic.2013.992.69

  39. S. Ali, A.S. Khan, A.U. Malik, M. Shahid, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.03.021

    Article  PubMed  Google Scholar 

  40. R. Anwar, S. Gull, M. Nafees, M. Amin, Z. Hussain, A.S. Khan, A.U. Malik, J. Horticult. Sci. Technol. (2018) https://doi.org/https://doi.org/10.46653/jhst180101035

  41. M.C.D.N. Nunes, Postharvest. Biol. Technol. (2015). https://doi.org/10.1016/j.postharvbio.2015.05.001

    Article  Google Scholar 

  42. M.C.N. Nunes, A. Delgado, Acta Horticult. (2014) https://doi.org/https://doi.org/10.17660/ActaHortic.2014.1049.113

  43. K. Kelly, V.M. Whitaker, M.C.D.N. Nunes, Sci Horticult. (2016). https://doi.org/10.1016/j.scienta.2016.09.012

    Article  Google Scholar 

  44. A.T. Mustapha, C. Zhou, H. Wahia, R. Amanor-Atiemoh, P. Otu, A. Qudus, O. Abiola-Fakayode, H. Ma, Ultrason. Sonochem. (2020). https://doi.org/10.1016/j.ultsonch.2020.105059

    Article  PubMed  Google Scholar 

  45. Y. Thaer, A.M. D’Onghia, A. Ricelli, Biol. Control Fungal Bacter. Plant Pathog. 86, 143–148 (2013)

    Google Scholar 

  46. W. Wang, X. Ma, M. Zou, P. Jiang, W. Hu, J. Li, Z. Zhi, J. Chen, S. Li, T. Ding, X. Ye, D. Liu, J Food Sci. (2015). https://doi.org/10.1111/1750-3841.12955

    Article  PubMed  Google Scholar 

  47. L. Cheng, C. Soh, S. Liew, F. Teh, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2007.02.001

    Article  PubMed  Google Scholar 

  48. F.A. Miller, C.L.M. Silva, T.R.S. Brandão, Food Eng. Rev. (2013). https://doi.org/10.1007/s12393-013-9064-5

    Article  Google Scholar 

  49. G.T. Xanthopoulos, C.G. Templalexis, N.P. Aleiferis, D.I. Lentzou, Biosyst. Eng. (2017). https://doi.org/10.1016/j.biosystemseng.2017.03.011

    Article  Google Scholar 

  50. S.T.d. Freitas, E.I.P. Pereira, A.C.S. Gomez, A. Brackmann, F. Nicoloso, D.A. Bisognin, Horticultura Brasileira. (2012) http://doi.org/https://doi.org/10.1590/S0102-05362012000100016

  51. A.S. Chemeda, G. Bultosa, N. Dechassa, Sci. Technol. Arts Res. J. (2014). https://doi.org/10.4314/star.v3i1.14

    Article  Google Scholar 

  52. E. Almenar, P. Hernandez-Munoz, J.M. Lagaron, R. Catala, R. Gavara, J. Agric. Food Chem. (2006). https://doi.org/10.1021/jf0517492

    Article  PubMed  Google Scholar 

  53. D.M. Holcroft, A.A. Kader, Postharvest. Biol Technol. (1999). https://doi.org/10.1016/S0925-5214(99)00023-X

    Article  Google Scholar 

  54. M. Alothman, B. Kaur, A. Fazilah, R. Bhat, A.A. Karim, Innov. Food Sci. Emerg. Technol. (2010). https://doi.org/10.1016/j.ifset.2010.08.008

    Article  Google Scholar 

  55. L. Zhang, Z. Lu, Z. Yu, X. Gao, Food Control (2005). https://doi.org/10.1016/j.foodcont.2004.03.007

    Article  Google Scholar 

  56. I. Konczak, W. Zhang, J. Biomed. Biotechnol. 2004, 239 (2004)

    Article  Google Scholar 

  57. E.M.C. Alexandre, T.R.S. Brandao, C.L.M. Silva, J. Food. Eng. (2012). https://doi.org/10.1016/j.jfoodeng.2011.09.002

    Article  Google Scholar 

  58. D. Malenčić, B. Kiprovski, M. Popović, D. Prvulović, J. Miladinović, V. Djordjević, Plant Physiol. Biochem. (2010). https://doi.org/10.1016/j.plaphy.2010.08.003

    Article  PubMed  Google Scholar 

  59. M.L. Racchi, Antioxidants (2013). https://doi.org/10.3390/antiox2040340

    Article  PubMed  PubMed Central  Google Scholar 

  60. X. Yuting, Z. Lifen, Z. Jianjun, S. Jie, Y. Xingqian, L. Donghong, Int. J. Agric. Biol. Eng. 6, 116 (2013)

    Google Scholar 

Download references

Acknowledgements

Research study was funded by U.S.-Pakistan Center for Advanced Studies in Agriculture and Food Security and Punjab Agricultural Research Board (Project No. PARB-957) to R. Anwar and by Higher Education Commission’s Technology Development Fund Program (Project No. TDF-017) to A.U. Malik.

Author information

Authors and Affiliations

Authors

Contributions

AM: conceptualization, methodology, data acquisition, statistical analysis, writing—original draft, final approval of the manuscript; RA: conceptualization, funding acquisition, supervision, writing—reviewing and editing, final approval of the manuscript; AUM: designing of the study, interpretation of data, writing—reviewing and editing, final approval of the manuscript; MIUR: interpretation of data, writing—reviewing and editing, final approval of the manuscript; ASK: interpretation of data, writing—reviewing and editing, final approval of the manuscript; MUH: writing—reviewing and editing, final approval of the manuscript; ZH: Writing—reviewing and editing, final approval of the manuscript; ZS: writing—reviewing and editing, final approval of the manuscript.

Corresponding author

Correspondence to Raheel Anwar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 4820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryam, A., Anwar, R., Malik, A.U. et al. Combined aqueous ozone and ultrasound application inhibits microbial spoilage, reduces pesticide residues and maintains storage quality of strawberry fruits. Food Measure 15, 1437–1451 (2021). https://doi.org/10.1007/s11694-020-00735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00735-3

Keywords

Navigation